- Вільний білірубін як предиктор нейротоксичності: питання майбутнього?
Вільний білірубін як предиктор нейротоксичності: питання майбутнього?
PERINATOLOGY AND PEDIATRIC. UKRAINE. 2018.4(76):67-73; doi 10.15574/PP.2018.76.67
Доброванов О., Кралинський К.
Третя дитяча клініка Словацького медичного університету, лікарня загального профілю з поліклінікою (некомерційна організація), м. Лученець
Університет здоров'я і соціальних наук Святої Єлизавети, м. Братислава, Словаччина
Друга дитяча клініка Словацького медичного університету, дитяча факультативна лікарня з поліклінікою, м. Банська Бистриця, Словаччина
Факультет охорони здоров'я Словацького медичного університету в Братиславі, м. Банська Бистриця, Словаччина
Вільний білірубін є відносно новим маркером, який більш інформативний при оцінці ризику нейротоксичності білірубіну. Цей маркер у майбутньому може бути корисним для менеджменту жовтяниці новонароджених, а також використовуватися як однин з критеріїв для операції замінного переливання крові. Він являє собою фракцію білірубіну у сироватці або плазмі, яка не зв'язана з білками і краще проходить через гематоенцефалічний бар'єр. У найближчому майбутньому імовірно зміняться погляди на інтерпретацію деяких біохімічних параметрів, і для оцінки ризику нейротоксичності буде недостатньо використовувати лише показник загального білірубіну, особливо у недоношених новонароджених. Найбільшою перешкодою для використання і введення цього маркера у клінічну практику є необхідність адаптації методу для повсякденного використання. Результати клінічних досліджень та накопичені дані дозволяють прогнозувати прискорену інтеграцію цього параметра в рутинний протокол менеджменту жовтяниці новонароджених.
Ключові слова: вільний білірубін, жовтяниця, менеджмент, новонароджений, окислювальний стрес, фототерапія.
ЛІТЕРАТУРА
1. Ahlfors CE, Amin SB, Parker AE. (2009). Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J Perinatol. 29: 305–309. https://doi.org/10.1038/jp.2008.199; PMid:19242487 PMCid:PMC4285409
2. Ahlfors CE, Bhutani VK, Wong RJ, Stevenson DK. (2018, Jul 2). Bilirubin binding in jaundiced newborns: from bench to bedside? Pediatr Res. https://doi.org/10.1038/s41390-018-0010-3.
3. Ahlfors CE, Marshall GD, Wolcott DK, Olson DC, Van Overmeire B. (2006). Measurement of unbound bilirubin by the peroxidase test using Zone Fluidics. Clin Chim Acta. 365(1–2): 78–85. https://doi.org/10.1016/j.cca.2005.07.030; PMid:16168977
4. Amin SB, Charafeddine L, Guillet R. (2005). Transient bilirubin encephalopathy and apnea of prematurity in 28 to 32 weeks gestational age infants. J Perinatol. 25(6): 386–390. https://doi.org/10.1038/sj.jp.7211295; PMid:15843815
5. Amin SB, Saluja S, Saili A, et al. (2017). Chronic Auditory Toxicity in Late Preterm and Term Infants With Significant Hyperbilirubinemia. Pediatrics. 140(4). https://doi.org/10.1542/peds.2016-4009; PMid:28954873 PMCid:PMC5613832.
6. Amin SB, Wang H. (2018). Bilirubin Albumin Binding and Unbound Unconjugated Hyperbilirubinemia in Premature Infants. J Pediatr. 192: 47–52. https://doi.org/10.1016/j.jpeds.2017.09.039; PMid:29132818 PMCid:PMC5732858
7. Amin SB. (2004). Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol. 28(5): 340—347. https://doi.org/10.1053/j.semperi.2004.09.005; PMid:15686265
8. Andreu Y, Ostra M, Ubide C, Galban J, de Marcos S, Castillo JR. (2002). Study of a fluorometricenzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration. Talanta. 57(2): 343–353. https://doi.org/10.1016/S0039-9140(02)00023-1
9. Basu S, DE, D, Dev Khanna H, et al. (2014, Jul). Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J Perinatol. 34(7): 519–23. https://doi.org/10.1038/jp.2014.45 [Epub ahead of print]
10. Bratlid D. (1990). How bilirubin gets into the brain. Clin Perinatol. 17(2): 449–465. https://doi.org/10.1016/S0095-5108(18)30578-5
11. Calligaris SD, Bellarosa C, Giraudi P, Wennberg RP, Ostrow JD, Tiribelli C. (2007). Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr Res. 62(5): 576–580. https://doi.org/10.1203/PDR.0b013e3181568c94; PMid:18049372
12. Daneman R. (2012). The blood-brain barrier in health and dissease. Ann Neurol. 72(5):648–672. https://doi.org/10.1002/ana.23648; PMid:23280789
13. Demova K, Fussiova M, Kovacsova M. (2017). Novorodenecka zltacka, Pediatr prax. 18(2): 51–58.
14. Gamaleldin R, Iskander I, Seoud I et al. (2011). Risk factors for neurotoxicity in newborns with severe neonatal hyperbilirubinemia. Pediatrics. 128(4): e925–e931. https://doi.org/10.1542/peds.2011-0206;PMid:21911352
15. Gupta N, Singh T, Chaudhary R et al. (2016). Bilirubin in coronary artery disease: Cytotoxic or protective? World J Gastrointest Pharmacol Ther. 7(4): 469–476. https://doi.org/10.4292/wjgpt.v7.i4.469; PMid:27867680
16. Hegyi T, Kleinfeld A, Huber A et al. (2018, Mar. 12). Unbound bilirubin measurements by a novel probe in preterm infants. J Matern Fetal Neonatal Med: 1–6. https://doi.org/10.1080/14767058.2018.1448380
17. Jacobsen J, Wennberg RP. (1974). Determination of unbound bilirubin in the serum of newborns. Clin Chem. 20(7): 783. PMid:4835230
18. Jon F. Watchko. (2016). Measurement of Circulating Unbound Bilirubin: Will It Ever Be a Part of Routine Neonatal Care? The Journal of Pediatrics. 173: 6–7. https://doi.org/10.1016/j.jpeds.2016.03.044; PMid:27063804
19. Lakowicz JR. (2001). Radiative decay engineering: biophysical and biomedical applications. Anal Biochem. 298(1): 1–24. https://doi.org/10.1006/abio.2001.5377; PMid:11673890
20. Letamendia-Richard E, Ammar RB, Tridente A, De Luca D. (2016). Relationship between transcutaneous bilirubin and circulating unbound bilirubin in jaundiced neonates. Early Hum Dev. 103: 235–239. https://doi.org/10.1016/j.earlhumdev.2016.10.005; PMid:27838549
21. Martelanca M, Ziberna L, Passamonti S, Franko M. (2014). Direct determination of free bilirubin in serum at sub-nanomolar levels. Analytica Chimia Acta. 809: 174–182. https://doi.org/10.1016/j.aca.2013.11.041; PMid:24418149
22. McDonagh AF, Vreman HJ, Wong RJ, Stevenson DK. (2009). Photoisomers: obfuscating factors in clinical peroxidase measurements of unbound bilirubin? Pediatrics. 123(1): 67–76. https://doi.org/10.1542/peds.2008-0492; PMid:19117862
23. Morioka I. (2018). Hyperbilirubinemia in preterm infants in Japan: New treatment criteria. Pediatrics International. 60: 684–690. https://doi.org/10.1111/ped.13635; PMid:29906300
24. Muoio V, Persson PB, Sendeski MM. (2014). The neurovascular unit — concept review. Acta Physiol (Oxf). 210(4): 790—798. https://doi.org/10.1111/apha.12250; PMid:24629161
25. Nag N, Halder S, Chaudhuri R et al. (2009). Role of bilirubin as antioxidant in neonatal jaundice and effect of ethanolic extract of sweet lime peel on experimentally induced jaundice in rat. Indian Journal of Biochemistry & Biophysics. 46: 73—78. PMid:19374257
26. Nakamura H, Yonetani M, Uetani Y, Funato M, Lee Y. (1992). Determination of serum unbound bilirubin for prediction of kernicterus in low birthweight infants. Acta Paediatr Jpn. 34(6): 642–647. https://doi.org/10.1111/j.1442-200X.1992.tb01024.x; PMid:1285512
27. Ostrow JD, Mukerjee P, Tiribelli C. (1994). Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. J Lipid Res. 35(10): 1715—1737. PMid:7852850
28. Pi’ha J. (2014). Bariery nervoveho systemu za fyziologickych a patologickych stavuю Cesk Slov Neurol. 77; 110(5): 553–559.
29. Raye-Ann deRegnier. (2018). The uncomfortable problem of unbound bilirubin in extremely preterm infants. The Journal of Pediatrics. 192: 1. https://doi.org/10.1016/j.jpeds.2017.11.002; https://doi.org/10.1016/j.jpeds.2018.03.019; https://doi.org/10.1016/j.jpeds.2018.09.014
30. Ruud Hansen TW. (2015). Phototherapy for neonatal jaundice — therapeutic effects on more than one level? Semin Perinatol. 34(3): 231—234. https://doi.org/10.1053/j.semperi.2010.02.008; PMid:20494740
31. Sanjiv B, Amin MD et al. (2011). Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates, Semin Perinatol. 35(3): 134—140. https://doi.org/10.1053/j.semperi.2011.02.007; PMid:21641486
32. Sgro M, Campbell D, Shah V. (2006). Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 175(6): 587—590. https://doi.org/10.1503/cmaj.060328; PMid:16966660
33. Shapiro SM. (2003). Bilirubin toxicity in the developing nervous system. Pediatr Neurol. 29(5): 410–421. https://doi.org/10.1016/j.pediatrneurol.2003.09.011; PMid:14684236
34. Shekeeb Shahab M, Kumar P et al. (2008). Evaluation of oxidant and antioxidant status in term neonates: A plausible protective role of bilirubin. Mol Cell Biochem. 317(1–2): 51–59. https://doi.org/10.1007/s11010-008-9807-4; PMid:18560765
35. Shimabuku R, Nakamura H. (1982). Total and unbound bilirubin determination using an automated peroxidase micromethod. Kobe J Med Sci. 28(2): 91–104. PMid:6285074
36. Stark AM, Bhutani VK. (2017). Neonatal hyperbilirubinemia. In: Cloherty and Stark's Manual of Neonatal Care. 8th ed. Lippincott Williams & Wilkins: 335–352. PMid:28509628
37. Tilling T, Engelbertz C, Decker S, Korte D, Huwel S, Galla HJ. (2002). Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310(1): 19–29. https://doi.org/10.1007/s00441-002-0604-1; PMid:12242480
38. Vitek L, Jirsa Jr M, Brodanova M et al. (2002). Gilbert Syndrome and Ischemic Heart Disease: A Protective Effect of Elevated Bilirubin Levels. Atherosclerosis. 160(2): 449–456. https://doi.org/10.1016/S0021-9150(01)00601-3
39. Volpe J. (2001). Bilirubin and brain injury. In: Neurology of the Newborn. 5th ed. Philadelphia: Saunders Elseveir: 619–651.
40. Wang X, Chowdhury JR et al. (2006). Bilirubin metabolism: Applied physiology Current. Paediatrics. 16: 70–74. https://doi.org/10.1016/j.metabol.2006.06.019; PMid:17046551
41. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. (2013). The blood-brain barrier: an engineering perspective. Front Neuroeng. 6: 7. https://doi.org/10.1182/blood-2012-10-462655; https://doi.org/10.1182/blood-2012-06-434373; https://doi.org/10.1182/blood-2013-05-503359; https://doi.org/10.1182/blood-2013-03-489641; https://doi.org/10.1182/blood-2012-12-475863; https://doi.org/10.1182/blood-2013-07-511170; https://doi.org/10.1182/blood-2012-06-436691; https://doi.org/10.1182/blood-2012-10-460618; https://doi.org/10.1182/blood-2012-11-467787; https://doi.org/10.1182/blood-2012-08-451765; https://doi.org/10.1182/blood-2013-06-506691; https://doi.org/10.1182/blood-2013-05-499806; https://doi.org/10.1182/blood-2012-07-445205; PMid:23372168 PMCid:PMC3617636
42. Ziberna L, Martelanc M et al. (2016). Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells, Scientific Reports. 6: 29240. https://doi.org/10.1038/srep29240; PMid:27381978 PMCid:PMC4933905
Стаття надійшла до редакції 12.08.2018 р., прийнята до друку 12.11.2018 р.