- Імунна тромбоцитопенія та розповсюджений лімфопроліферативний синдром як первинні клінічні прояви комбінованого імунодефіциту, пов’язаного з дефектом CTLA-4
Імунна тромбоцитопенія та розповсюджений лімфопроліферативний синдром як первинні клінічні прояви комбінованого імунодефіциту, пов’язаного з дефектом CTLA-4
Modern Pediatrics. Ukraine. (2025).5(149): 132-142. doi: 10.15574/SP.2025.5(149).132142
Дорош О. І.1,2, Курилех М. А.1, Тимчишин С. М.1, Яворська О.Т.1
1КНП Львівської обласної ради «Клінічний центр дитячої медицини», СП «Західноукраїнський спеціалізований центр», Україна
2Львівський національний медичний університет імені Данила Галицького, Україна
Для цитування: Дорош ОІ, Курилех МА, Тимчишин СМ, Яворська ОТ. (2025). Імунна тромбоцитопенія та розповсюджений лімфопроліферативний синдром як первинні клінічні прояви комбінованого імунодефіциту, пов’язаного з дефектом CTLA-4. Сучасна педіатрія. Україна. 5(149): 132-142. doi: 10.15574/SP.2025.5(149).132142.
Стаття надійшла до редакції 02.05.2025 р., прийнята до друку 10.09.2025 р.
Тяжкий комбінований імунодефіцит (ТКІД), пов’язаний із дефектом CTLA-4, – це рідкісне серйозне генетичне імунологічне захворювання, яке виникає внаслідок мутації гена CTLA-4 (cytotoxic T-lymphocyte-associated protein 4). Типовим для такого імунодефіциту є системний розповсюджений лімфопроліферативний синдром (РЛС), що проявляється генералізованою лімфаденопатією, гепатоспленомегалією та інфільтрацією внутрішніх органів лімфоїдними клітинами. При цьому патологічному стані спостерігаються аутоімунні цитопенії, серед яких імунна тромбоцитопенія (ІТП) може бути першим або єдиним клінічним проявом на ранніх етапах захворювання, що суттєво ускладнює діагностування. Більшість описаних у літературі випадків мають дебют захворювання в дитячому або підлітковому віці.
Мета – описати клінічний випадок дебюту ТКІД, асоційованого з дефектом CTLA-4, з поєднанням ІТП та РЛС.
Клінічний випадок. У півторарічному віці у дівчинки з прогресуючою системною лімфаденопатією, гепатоспленомегалією, тромбоцитопенією, частими інфекціями (краснухою, ротавірусом, COVID-19, гострими респіраторними захворюваннями) виявлено зниження IgA, IgM, IgG, В-клітин пам’яті, наявність ANA і позитивний результат на пряму пробу Кумбса. За результатами генетичного тестування верифіковано патогенний варіант у гені CTLA-4, асоційований з аутосомно-домінантною недостатністю CTLA-4 (імунна дисрегуляція, аутоімунітет, лімфопроліферація) і патогенний варіант у гені CORO1A, асоційований з аутосомно-рецесивним тяжким комбінованим імунодефіцитом.
Висновки. Початкові прояви ТКІД часто мають неспецифічний характер, що може призводити до затримки встановлення остаточного діагнозу. Поєднання РЛС та ІТП у дитячому віці слід розцінювати як потенційний прояв первинного імунодефіциту. CTLA-4-ТКІД є рідкісним клінічним випадком, що потребує підвищеної уваги щодо онкологічної та імунологічної настороженості. Раннє виявлення дефіциту CTLA-4 шляхом імунологічного та молекулярно-генетичного діагностування є критично важливим для своєчасного призначення лікування і запобігання тяжким ускладненням. Лікарі різних спеціальностей повинні розглядати вроджені імунодефіцити як можливі причини захворювань під час диференційного діагностування.
Дослідження виконано за принципами Гельсінської декларації. На проведення дослідження отримано інформовану згоду батьків пацієнтки.
Автори заявляють про відсутність конфлікту інтересів.
Ключові слова: імунна тромбоцитопенія, розповсюджений лімфопроліферативний синдром, гетерозиготна мутація гена CTLA-4, тяжкий комбінований імунодефіцит, діти.
ЛІТЕРАТУРА
1. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT et al. (2015). Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 136(5): 1186-205.e1-78. Epub 2015 Sep 12. https://doi.org/10.1016/j.jaci.2015.04.049; PMid:26371839
2. Catak MC, Akcam B, Bilgic Eltan S, Babayeva R, Karakus IS, Akgun G et al. (2022). Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 77(10): 3108-3123. Epub 2022 May 12. https://doi.org/10.1111/all.15331; PMid:35491430
3. Cortesi M, Soresina A, Dotta L, Gorio C, Cattalini M, Lougaris V et al. (2022). Pathogenesis of Autoimmune Cytopenias in Inborn Errors of Immunity Revealing Novel Therapeutic Targets. Front Immunol. 13: 846660. https://doi.org/10.3389/fimmu.2022.846660; PMid:35464467 PMCid:PMC9019165
4. Cunningham-Rundles C, Casanova JL, Boisson B. (2024). Common variable immunodeficiency: autoimmune cytopenias and advances in molecular diagnosis. Hematology Am Soc Hematol Educ Program. 2024(1): 137-142. https://doi.org/10.1182/hematology.2024000538; PMid:39643993 PMCid:PMC11665743
5. Delmonte OM, Notarangelo LD. (2020). Targeted Therapy with Biologicals and Small Molecules in Primary Immunodeficiencies. Med Princ Pract. 29(2): 101-112. Epub 2019 Oct 10. https://doi.org/10.1159/000503997; PMid:31597133 PMCid:PMC7098309
6. Delmonte OM, Villa A, Notarangelo LD. (2020). Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood. 135(9):610-619. https://doi.org/10.1182/blood.2019000923; PMid:31942628 PMCid:PMC7046604
7. Dhunputh C, Ducassou S, Fernandes H, Picard C, Rieux-Laucat F, Viallard JF et al. (2022). Abatacept is useful in autoimmune cytopenia with immunopathologic manifestations caused by CTLA-4 defects. Blood. 139(2): 300-304. https://doi.org/10.1182/blood.2021013496; PMid:34714911
8. Dorosh OI, Tymchyshyn SM, Melko IP, Voloshchuk VB, Lizarov YuV, Kreminska ОS et al. (2023). Genetic verification of an autoinflammatory syndrome caused by a heterozygous mutation in the SOCS1 gene masquerading as hemoblastosis. Clinical case. Modern Pediatrics. Ukraine. 6(134). 133-141. https://doi.org/10.15574/SP.2023.134.133
9. Drabko K, Zarychta J, Kowalczyk A, Cienkusz M. (2024). Case report: Pediatric patient with severe clinical course of CTLA-4 insufficiency treated with HSCT. Front Immunol. 15: 1484467. https://doi.org/10.3389/fimmu.2024.1484467; PMid:39624103 PMCid:PMC11609194
10. Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari ME, Schwab C et al. (2022). Therapeutic options for CTLA-4 insufficiency. J Allergy Clin Immunol. 149(2): 736-746. Epub 2021 Jun 7. https://doi.org/10.1016/j.jaci.2021.04.039; PMid:34111452
11. Egg D, Schwab C, Gabrysch A, Arkwright PD, Cheesman E, Giulino-Roth L et al. (2018). Increased Risk for Malignancies in 131 Affected CTLA4 Mutation Carriers. Front Immunol. 9: 2012. https://doi.org/10.3389/fimmu.2018.02012; PMid:30250467 PMCid:PMC6140401
12. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E et al. (2014). Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 46(8): 812-814. Epub 2014 Jul 20. https://doi.org/10.1038/ng.3040; PMid:25038750 PMCid:PMC4129488
13. Flinn AM, Gennery AR. (2022). Primary immune regulatory disorders: Undiagnosed needles in the haystack? Orphanet J Rare Dis. 17(1): 99. https://doi.org/10.1186/s13023-022-02249-1; PMid:35241125 PMCid:PMC8895571
14. Gambineri E, Torgerson TR. (2012). Genetic disorders with immune dysregulation. Cell Mol Life Sci. 69(1): 49-58. Epub 2011 Oct 9. https://doi.org/10.1007/s00018-011-0838-8; PMid:21984607 PMCid:PMC11114701
15. Gámez-Díaz L, Grimbacher B. (2021). Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J. 44(4): 400-411. Epub 2021 Apr 19. https://doi.org/10.1016/j.bj.2021.04.005; PMid:34384744 PMCid:PMC8514790
16. Genio E, Lecca M, Ciccocioppo R, Errichiello E. (2025). CTLA4 Alteration and Neurologic Manifestations: A New Family with Large Phenotypic Variability and Literature Review. Genes (Basel). 16(3): 306. https://doi.org/10.3390/genes16030306; PMid:40149457 PMCid:PMC11942126
17. Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magérus-Chatinet A, Mazerolles F et al. (2019). Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood. 134(1): 9-21. Epub 2019 Apr 2. https://doi.org/10.1182/blood-2018-11-887141; PMid:30940614
18. Hbibi M, El Alaoui El Hanafi M, Kasmi Z, Ouair H, Benmiloud S, Ailal F et al. (2024). Autoimmune cytopenias in children: When to think of primary immunodeficiency? Tunis Med. 102(1): 1-6. PMID: 38545722; PMCID: PMC11261479. https://doi.org/10.62438/tunismed.v102i1.4503
19. Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. (2020). CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 80: 106221. Epub 2020 Jan 30. https://doi.org/10.1016/j.intimp.2020.106221; PMid:32007707
20. Klangkalya N, Fleisher TA, Rosenzweig SD. (2024). Diagnostic tests for primary immunodeficiency disorders: Classic and genetic testing. Allergy Asthma Proc. 45(5): 355-363. https://doi.org/10.2500/aap.2024.45.240051; PMid:39294902 PMCid:PMC11425801
21. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT et al. (2014). Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 345(6204): 1623-1627. Epub 2014 Sep 11. https://doi.org/10.1126/science.1255904; PMid:25213377 PMCid:PMC4371526
22. Latour S, Winter S. (2018). Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol. 9: 1103. https://doi.org/10.3389/fimmu.2018.01103; PMid:29942301 PMCid:PMC6004768
23. Lee S, Moon JS, Lee CR, Kim HE, Baek SM, Hwang S, et al. (2016). Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 137(1): 327-330. Epub 2015 Oct 21. https://doi.org/10.1016/j.jaci.2015.08.036; PMid:26478010
24. López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N et al. (2021). Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol. 12: 671755. https://doi.org/10.3389/fimmu.2021.671755; PMid:34447369 PMCid:PMC8382720
25. Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J et al. (2022). Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol. 13: 1070068. https://doi.org/10.3389/fimmu.2022.1070068; PMid:36636328 PMCid:PMC9831655
26. Mitsuiki N, Schwab C, Grimbacher B. (2019). What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev. 287(1): 33-49. https://doi.org/10.1111/imr.12721; PMid:30565239
27. Mousavi-Hasanzadeh M, Bagheri B, Mehrabi S, Eghbali A, Eghbali A. (2020). Sirolimus versus cyclosporine for the treatment of pediatric chronic immune thrombocytopenia: A randomized blinded trial. Int Immunopharmacol. 88: 106895. Epub 2020 Aug 29. https://doi.org/10.1016/j.intimp.2020.106895; PMid:32871473
28. Navarini AA, Hruz P, Berger CT, Hou TZ, Schwab C, Gabrysch A et al. (2017). Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J Allergy Clin Immunol. 139(3): 1043-1046.e5. Epub 2016 Nov 28. https://doi.org/10.1016/j.jaci.2016.08.042; PMid:27908448
29. Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K et al. (2015). Coronin-1A: immune deficiency in humans and mice. J Clin Immunol. 35(2): 100-107. Epub 2015 Feb 10. https://doi.org/10.1007/s10875-015-0130-z; PMid:25666293 PMCid:PMC4489527
30. Russo G, Parodi E, Farruggia P, Notarangelo LD, Perrotta S, Casale M et al. (2024). Recommendations for the management of acute immune thrombocytopenia in children. A Consensus Conference from the Italian Association of Pediatric Hematology and Oncology. Blood Transfus. 22(3): 253-265. Epub 2024 Jan 29. doi: 10.2450/BloodTransfus.501. PMID: 37677093; PMCID: PMC11073630.
31. Salami F, Fekrvand S, Yazdani R, Shahkarami S, Azizi G, Bagheri Y et al. (2022). Evaluation of Expression of LRBA and CTLA-4 Proteins in Common Variable Immunodeficiency Patients. Immunol Invest. 51(2): 381-394. Epub 2020 Nov 15. https://doi.org/10.1080/08820139.2020.1833029; PMid:33191838
32. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A et al. (2014). Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 20(12): 1410-1416. Epub 2014 Oct 20. https://doi.org/10.1038/nm.3746; PMid:25329329 PMCid:PMC4668597
33. Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D et al. (2018). Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol. 142(6): 1932-1946. Epub 2018 May 4. https://doi.org/10.1016/j.jaci.2018.02.055; PMid:29729943 PMCid:PMC6215742
34. Seidel MG. (2014). Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment. Blood. 124(15): 2337-2344. Epub 2014 Aug 27. https://doi.org/10.1182/blood-2014-06-583260; PMid:25163701 PMCid:PMC4192747
35. Sewell WA, Kerr J, Behr-Gross ME, Peter HH; Kreuth Ig Working Group. (2014). European consensus proposal for immunoglobulin therapies. Eur J Immunol. 44(8): 2207-2214. https://doi.org/10.1002/eji.201444700; PMid:24975475
36. Sztajnbok F, Fonseca AR, Campos LR, Lino K, Rodrigues MCF, Silva RM et al. (2024). Hemophagocytic lymphohistiocytosis and macrophage activation syndrome: two rare sides of the same devastating coin. Adv Rheumatol. 64(1): 28. https://doi.org/10.1186/s42358-024-00370-2; PMid:38627860
37. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al. (2020). Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 40(1): 24-64. Epub 2020 Jan 17. doi: 10.1007/s10875-019-00737-x. Erratum in: J Clin Immunol. 2020 Jan; 40(1):65. https://doi.org/10.1007/s10875-020-00763-0; PMid:32086639 PMCid:PMC7645445
38. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al. (2020). Correction to: Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 40(1): 65. doi: 10.1007/s10875-020-00763-0. Erratum for: J Clin Immunol. 40(1): 24-64. https://doi.org/10.1007/s10875-019-00737-x; PMid:31953710 PMCid:PMC7082301
39. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM et al. (2022). Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 42(7): 1473-1507. Epub 2022 Jun 24. https://doi.org/10.1007/s10875-022-01289-3; PMid:35748970 PMCid:PMC9244088
40. Thalhammer J, Kindle G, Nieters A, Rusch S, Seppänen MRJ, Fischer A et al. (2021). Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J Allergy Clin Immunol. 148(5): 1332-1341.e5. Epub 2021 Apr 23. https://doi.org/10.1016/j.jaci.2021.04.015; PMid:33895260
41. Toskov V, Ehl S. (2023). Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr. 10(1): 11. https://doi.org/10.1186/s40348-023-00167-1; PMid:37702894 PMCid:PMC10499775
42. Verma N, Burns SO, Walker LSK, Sansom DM. (2017). Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol. 190(1): 1-7. Epub 2017 Jul 21. https://doi.org/10.1111/cei.12997; PMid:28600865 PMCid:PMC5588810
43. Zama D, Conti F, Moratti M, Cantarini ME, Facchini E, Rivalta B et al. (2021). Immune cytopenias as a continuum in inborn errors of immunity: An in-depth clinical and immunological exploration. Immun Inflamm Dis. 9(2): 583-594. Epub 2021 Apr 10. https://doi.org/10.1002/iid3.420; PMid:33838017 PMCid:PMC8127541
