• Затримка внутрішньоутробного росту плода, психічний та фізичний розвиток дітей 
ua До змісту

Затримка внутрішньоутробного росту плода, психічний та фізичний розвиток дітей 

HEALTH OF WOMAN. 2016.3(109):141–148; doi 10.15574/HW.2016.109.141 
 

Затримка внутрішньоутробного росту плода, психічний та фізичний розвиток дітей 
 

Веропотвелян М. П., Веропотвелян П. М., Журавльова С. А., Гламазда А. І.

ОКЗ «Міжобласний центр медичної генетики і пренатальної діагностики», м. Кривий Ріг

Національний медичний університет ім. О.О. Богомольця, м. Київ 
 

У статті висвітлені сучасні дослідження щодо фізичного і психомоторного розвитку дітей із затримкою внутрішньоутробного росту (ЗВУР).

Проаналізовано дані 53 публікацій досліджень зарубіжних авторів з лікування дітей із ЗВУР, їхнього фізичного, інтелектуального, психомоторного розвитку, нутративного статусу).

Для радикального вирішення ситуації необхідна активна позиція науково-дослідних центрів з питання розроблення і впровадження сучасних методів лікування таких дітей і профілактики частих інтеркурентних захворювань. 
 

Ключові слова: затримка внутрішньоутробного росту, фізичний розвиток, психомоторний розвиток, недоношені діти. 
 

Література: 
1. Pollack RN, Divon MY. 1992. Intrauterine growth retardation: definition, classification, and etiology. Clin Obstet Gynec. 35(1):99–107. http://dx.doi.org/10.1097/00003081-199203000-00015

2. Ballard JL, Khoury JC, Wedig K, Wang L, Eilers-Walsman BL, Lipp R. 1991. New Ballard Score, expanded to include extremely premature infants. J. Pediatr. 119(3):417–23.

3. Sasidharan K, Dutta S, Narang A. 2009. Validity of New Ballard Score until 7th day of postnatal life in moderately preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 94(1):39–44.

4. Georgieff MK. 2007. Nutrition and the developing brain: nutrient priorities and measurement. Am. J. Clin. Nutr. 85(2):614–20.

5. Brown DL, Hendrickson K, Masor ML, Hay WW. 2014. High-protein formulas: evidence for use in preterm infants. Clin. Perinatol. 41(2):383–403. http://dx.doi.org/10.1016/j.clp.2014.02.002; PMid:24873839

6. Adamkin DH, Radmacher PG. 2014. Fortification of human milk in very low birth weight infants (VLBW <1500 g birth weight). Clin. Perinatol. 41(2):405–21. http://dx.doi.org/10.1016/j.clp.2014.02.010; PMid:24873840

7. Lee BS. 2015. Nutritional strategy of early amino acid administration in very low birth weight infants. Korean J. Pediatr. 58(3):77–83.

8. Uauy R, Mena P. 2015. Long-chain polyunsaturated fatty acids supplementation in preterm infants. Curr. Opin. Pediatr. 27(2):165–71.

9. Roggero P, Giannм ML, Orsi A, Amato O, Piemontese P, Liotto N et al. 2012. Implementation of nutritional strategies decreases postnatal growth restriction in preterm infants. PLoS One. 7(12):e51166.

10. Fischer CJ, Maucort-Boulch D, Essomo Megnier-Mbo CM, Remontet L, Claris O. 2014. Early parenteral lipids and growth velocity in extremely-low-birth-weight infants. Clin. Nutr. 33(3):502–8.

11. Kirillovа EA. 2015. Physical and psychomotor development in ineants with intrauterine growth retardation. Obstetrics and Gynecology 11:23–27.

12. Koletzko B, Poindexter B, Uauy R eds. 2014. Nutritional care of preterm infants: scientific basis and practical guidelines. World Rev. Nutr. Diet. Basel: Karger. 110:215–27. http://dx.doi.org/10.1159/isbn.978-3-318-02641-2

13. Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A, Alderdice FA. 2015. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics. 135(1):126–41. http://dx.doi.org/10.1542/peds.2014-1143

14. DeFelice C, Tassi R, De Capua B, Jaubert F, Gentile M, Quartulli L et al. 2007. A new phenotypical variant of intrauterine growth restriction? Pediatrics. 119(4): e983–90.

15. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. 2006. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 17(3):337–47. http://dx.doi.org/10.1007/s00198-005-2039-5; PMid:16331359

16. Trebar B, Traunecker R, Selbmann NK, Ranke MB. 2007. Crowth during the first two years predicts pre-school height in children born with very low birth weight (VLBW): results of a study of 1320 children in Germany. Pediatr. Res. 62(2):209–14.

17. Milnerowicz-Nabzdyk E, Bizoс A. 2014. Effect of cigarette smoking on vascular flows in pregnancies complicated by intrauterine growth restriction. Reprod. Toxicol. 50(1):27–35.

18. Robajac D, Masnikosa R, Mikovic Ћ, Mandic V, Nedic O. 2015. Oxidation of placental insulin and insulin-like growth factor receptors in mothers with diabetes mellitus or preeclampsia complicated with intrauterine growth restriction. Free Radic. Res. 49(8):984–9.

19. Liu J. 2014. Clinical analysis of 126 cases of severe precocious preeclampsia complicated with fetal growth retardation. Zhonghua Yi Xue Za Zhi. 94(37):2945–7.

20. Kupferminc MJ. 2003. Thrombophilia and pregnancy. Reprod Biol Endocrinol. 1:111.

21. Baaschat AA, Gembruch U, Harman CR. 2001. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound in Obstet Gynec 18(6):571–577. http://dx.doi.org/10.1046/j.0960-7692.2001.00591.x; PMid:11844191

22. Bishry G, Sturgiss SN. 2003. Absent-end-diastolic flow velocity in the umbilical artery. Med Rev. 14(3):251–271. http://dx.doi.org/10.1017/s0965539503001116

23. Capponi A, Rizzo G, De Angelis C et al. 1997. Atrial natriuretic peptide levels in fetal blood in relation to inferior vena cava velocity waveforms. Obstet Gynec. 89(2):242–247. http://dx.doi.org/10.1016/S0029-7844(96)00432-2

24. Giuliano N, Annunziata ML, Tagliaferri S, Esposito FG, Imperato OC, Campanile M et al. 2014. IUGR management: new perspectives. J. Pregnancy:8. Article 620976.

25. Koklu E, Ozturk MA, Gunes T, Akcakus M, Kurtoglu S. 2007. Is increased intima-media thickness associated with preatherosclerotic changes in intrauterine growth restricted newborns? Acta Paediatr. 96(12):1858.

26. Baschat AA. 2011. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet. Gynecol. 37(5):501–14.

27. Fardiazar Z, Atashkhouei S, Yosefzad Y, Goldust M, Torab R. 2013. Comparison of fetal middle cerebral arteries, umbilical and uterin artery color Doppler ultrasound with blood gas analysis in pregnancy complicated by IUGR. Iran. J. Reprod. Med. 11(1):47–52.

28. Kessous R, Aricha-Tamir B, Weintraub AY, Sheiner E, Hershkovitz R. 2014. Umbilical artery peak systolic velocity measurements for prediction of perinatal outcome among IUGR fetuses. J. Clin. Ultrasound. 42(7):405–10.

29. Fenton TR. 2003. A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr. 3:13.

30. de Onis M, Garza C, Victora CG, Onyango AW, Frongillo EA, Martines J. 2004. The WHO Multicentre Growth Reference Study: planning, study design, and methodology. Food Nutr. Bull. 25(1):15–26. http://dx.doi.org/10.1177/15648265040251s103

31. Volgina SY. 2002. Physical development of adolescents born preterm. Health of the Russian Federation. M. 2:39–40.

32. Kashyap S, Ohira-Kist K, Аbildskov K, Towers HM, Sahni R, Ramakrishnan R, Schulze K. 2001. Effects of quality of energy intake on growth and metabolic response of enterally fed low-birth-weight infants. Pediatr. Res. 50(3):390–7.

33. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N. 2005. Altered adiposity after extremely preterm birth. Pediatr. Res. 57(2):211–5.

34. Ziegler EE, Donnel AM, Nelson SE, Fomon SJ. 1976. Body composition of the reference fetus. Growth. 40:329–41.

35. Ellis KJ. 2000. Human body composition. Physiol. Rev. 80(7):649–80.

36. Schurov VA, Safonova AV. 2013. The impact of different forms of intrauterine development of the dynamics of growth in children. The success of modern science 2:17–14.

37. Costa-Orvay JA, Figueras-Aloy J, Romera G, Closa-Monasterolo R, Carbonell-Estrany X. 2011. The effects of varying protein and energy intakes on the growth and body composition of very low birth weight infants. Nutr. J. 10:140.

38. Giannм ML, Roggero P, Piemontese P, Morlacchi L, Bracco B, Taroni F et al. 2015. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr. 104(3):119–23.

39. Okada T, Takahashi S, Nagano N, Yoshikawa K, Usukura Y, Hosono S. 2015. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: implications of catch-up fat. Pediatr. Res. 77(1–2):136–42.

40. Lucas A, Morley R, Cole TJ. 1988. Adverse neurodevelopmental outcome of moderate neonatal hypoglycemia. British Medical Journal. 297(6659):1304–1308.

41. Ehrenkranz RA, Younes N, Lemons JA, Fanarof AA, Donovan EF, Wright LL, Katsikiotis V, Tyson JE, Oh W, Shankaran S, Bauer CR, Korones SB, Stoll BJ, Stevenson DK, Papile LA. 1999. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics. 104(2):280–289.

42. Ford GW, Doyle LW, Davis NM, Callanan C. 2000. Very low birth weight and growth into adolescence. Archives of Pediatrics & Adolescent Medicine. 154(8):778–784.

43. Gibson AT, Carney S, Cavazzoni E, Wales JKH. 2000. Neonatal and post-natal growth. Hormone Research. 53(1):42–49. http://dx.doi.org/10.1159/000053204; PMid:10895042

44. Walker SP, Grantham-Mcgregor SM, Powell CA, Chang SM. 2000. Effects of growth restriction in early childhood on growth, IQ, and cognition at age 11 to 12 years and the benefits of nutritional supplementation and psychosocial stimulation. Journal of Pediatrics. 137(1):36–41.

45. Lucas A, Morley R, Cole J. 1998. Randomised trial of early diet in preterm babies and later intelligence quotient. British Medical Journal. 317(7171):1481–1487.

46. Fewtrell MS, Morley R, Abbott RA, Singhal A, Stephenson T, MacFadyen UM, Clements H, Lucas A. 2001. Catch-up growth in small-for-gestational-age term infants: a randomized trial. American Journal of Clinical Nutrition 74(4):516–523.

47. Olivares M, Llaguno S, Marin V, Hertrampf E, Mena P, Milad M. 1992. Iron status in low-birth-weight infants, small and appropriate for gestational age: A follow-up study. Acta Paediatrica. 81(10):824–828. http://dx.doi.org/10.1111/j.1651-2227.1992.tb12111.x; PMid:1421890

48. Lozoff B, Jimenez F, Hagen J, Mollen E, Wolf AW. 2000. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 105(4):51.

49. SanGiovanni JP, Parra-Cabrera S, Colditz GA, Berkey CS, Dwyer JT. 2000. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatrics 105(6):1292–1298. http://dx.doi.org/10.1542/peds.105.6.1292; PMid:10835071

50. O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, Connor SL, Fitzgerald K, Groh-Wargo S, Hartmann EE, Jacobs J, Janowsky J, Lucas A, Margeson D, Mena P, Neuringer M, Nesin M, Singer L, Stephenson T, Szabo J, Zemon V. 2001. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial. Pediatrics. 108(2):359–371. http://dx.doi.org/10.1542/peds.108.2.359

51. Embleton N, Wood CL. 2014. Wood growth, bone health, and later outcomes in infants born preterm. J. Pediatr. (Rio J). 90(6):529–32. http://dx.doi.org/10.1016/j.jped.2014.08.002; PMid:25128223

52. Keunen K, van Elburg RM, van Bel F, Benders MJ. 2015. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr. Res. 77(12):148–55.

53. Bhopal S, Mann K, Embleton N, Korada M, Cheetham T, Pearce M. 2011. The influence of early growth on bone mineral density at age 9-14 years in children born preterm. In: J. Dev. Orig. Health Dis: 7th World Congress on Developmental Origins of Health and Disease. Portland, Oregon, USA: Cambridge University Press.

54. Mirza FG, Bauer ST, Van der Veer A, Simpson LL. 2015. Gastroschisis: incidence and prediction of growth restriction. J. Perinat. Med. 43(5):605–8.

55. Bouman A, Weiss M, Jansen S, Hankel M, Nieuwint A, Adriaanse B et al. 2015. An interstitial de-novo microdeletion of 3q26.33q27.3 causing severe intrauterine growth retardation. Clin. Dysmorphol. 24(2):68–74. http://dx.doi.org/10.1097/MCD.0000000000000075; PMid:25714561

56. Machado Rde C, Brizot Mde L, Miyadahira S, Francisco RP, Krebs VL, Zugaib M. 2014. Intrauterine growth restriction in monochorionic-diamniotic twins. Rev. Assoc. Med. Bras. 60(6):585–90.

57. Odibo AO, Riddick C, Pare E, Stamilio DM, Macones GA. 2005. Cerebroplacental Doppler ratio and adverse perinatal outcomes in intrauterine growth restriction: evaluating the impact of using gestational age-specific reference values. J Ultrasound Med. 24(9):1223–8.

58. Morales- Rosellу J, Khalil A, Morlando M, Bhide A, Papageorghiou A, Thilaganathan B. 2015. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet. Gynecol. 45(2):156–61.

59. Degtyareva EI, Grigoryan OR, Volevodz NN, Andreeva EN, Klimenchenko NI, Melnichenko GA, Dedov II, Souhih GT. 2015. The role of gene imprinting in intrauterine growth retardation of the fetus. Obstet. and Gynecol. 12:6–9.

60. Piedrahita JA. 2011. .A. The role of imprinted genes in fetal growth abnormalities. Birth Defects Res. A. Clin. Mol. Teratol. 91(8):682–92. http://dx.doi.org/10.1002/bdra.20795; PMid:21648055 PMCid:PMC3189628

61. Dindot SV, Person R, Strivens M, Garcia R, Beaudet AL. 2009. Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. Genome Res. 19(8):1374–83. http://dx.doi.org/10.1101/gr.089185.108; PMid:19542493 PMCid:PMC2720189

62. Inoue J, Mitsuya K, Maegawa S, Kugoh H, Kadota M, Okamura D et al. 2001. Construction of 700 human/mouse A9 monochromosomal hybrids and analysis of imprinted genes on human chromosome 6. J. Hum. Genet. 46(3):137–45.

63. Вerger SL. 2007. The complex language of chromatin regulation during transcription. Nature. 447(7143):407–12.

64. Guillomot M, Taghouti G, Constant F, Degrelle S, Hue I, Chavatte-Palmer P, Jammes H. 2010. Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta. Placenta. 31(6):482–90. http://dx.doi.org/10.1016/j.placenta.2010.03.004; PMid:20381142

65. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. 2010. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19(1):36–51. http://dx.doi.org/10.1093/hmg/ddp465

66. Malamitsi-Puchner A, Nikolaou KE, Puchner KP. 2006. Intrauterine growth restriction, brain-sparing effect, and neurotrophins. Ann. N.Y. Acad. Sci. 1092:293–6.

67. McCarthy C, Cotter FE, McElwaine S, Twomey A, Mooney EE, Ryan F, Vaughan J. 2007. Altered gene expression patterns in intrauterine growth restriction: potential role of hypoxia. Am. J. Obstet. Gynecol. 196(1):70. e1-6. http://dx.doi.org/10.1196/annals.1365.026; PMid:17308153

68. Struwe E, Berzl G, Schild R, Blessing H, Drexel L, Hauck B et al. 2010. Microarray analysis of placental tissue in intrauterine growth restriction. Clin. Endocrinol. (Oxf.). 72(2):241–7.

69. Solter Ј, Aronson J, Gilbert SF, McGrath J. 1985. Nuclear transfer in mouse embryos: activation of the embryonic genome. Cold Spring Harb. Symp. Quant. Biol. 50:45–50. http://dx.doi.org/10.1101/SQB.1985.050.01.008; PMid:3868489

70. Baker J, Workman M, Bedrick E, Frey MA, Hurtado M, Pearson O. 2010. Brains versus brawn: an empirical test of Barker’s brain sparing model. Am. J. Hum. Biol. 22(2):206–15.