- The use of Streptococcus salivarius K12 and Lactobacillus rhamnosus LGG in the treatment of streptococcal tonsillitis in children
The use of Streptococcus salivarius K12 and Lactobacillus rhamnosus LGG in the treatment of streptococcal tonsillitis in children
Modern Pediatrics. Ukraine. (2025).6(150): 19-28. doi: 10.15574/SP.2025.6(150).1928
Kramarov S. O.1, Seriakova I. Yu.1, Yevtushenko V. V.1, Yevtushenko O. M.2
1Bogomolets National Medical University, Kyiv, Ukraine
2Kyiv City Children's Clinical Hospital № 2, Ukraine
For citation: Kramarov SO, Seriakova IYu, Yevtushenko VV, Yevtushenko OM. (2025). The use of Streptococcus salivarius K12 and Lactobacillus rhamnosus LGG in the treatment of streptococcal tonsillitis in children. Modern Pediatrics. Ukraine. 6(150): 19-28. doi: 10.15574/SP.2025.6(150).1928.
Article received: Jul 17, 2025. Accepted for publication: Sep 16, 2025.
Aim – to investigate the effectiveness of a combined probiotic containing bacteria of the genus Streptococcus salivarius K12 and Lactobacillus rhamnosus LGG in the treatment of streptococcal tonsillitis in children.
Materials and methods. A randomized, controlled, open, post-registration study was conducted. The study included 58 children diagnosed with streptococcal tonsillitis aged 1 to 17 years, who underwent inpatient treatment. Children were divided into 2 groups by randomization using the random number method. The control group consisted of 29 children who received standard treatment and the main group consisted of 29 children who received a combined probiotic Baktoblis+Lacto in addition to the protocol treatment. The study used clinical, laboratory and statistical methods to process the results obtained.
Results. We obtained a positive effect when using Baktoblis+Lacto. It was manifested by accelerated normalization of fever (average duration in the main group – 2.0±0.61 days, in the control group – 2.5±1.1 days), sore throat (1.92±0.67 days vs. 4.0±1.14 days, respectively), tonsil deposits (2.7±0.79 days vs. 3.5±0.86 days, respectively) and lymphadenopathy (2.8±0.51 days vs. 3.52±0.76 days, respectively). The frequency of antibiotic-associated diarrhea (AAD) in the control group was higher than in patients of the main group (the average duration in the control group – 3.6±0.62 days, in the main group – 2.1±0.55 days).
Conclusions. The combined probiotic (Streptococcus salivarius К12 + Lactobacillus rhamnosus LGG) in children with streptococcal tonsillitis promotes faster involution of disease symptoms and prevents the occurrence of AAD while taking antibiotics.
The research was carried out in accordance with the principles of the Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of the institution mentioned in the paper. The informed consent of the patient was obtained for conducting the studies.
Keywords: Streptococcus salivarius K12, Lactobacillus rhamnosus, streptococcal tonsillitis, antibiotic-associated diarrhea, children.
1. Ahrend H, Buchholtz A, Stope MB. (2025). Microbiome and Mucosal Immunity in the Intestinal Tract. In Vivo. 39(1): 17-24. https://doi.org/10.21873/invivo.13801’ PMid:39740876 PMCid:PMC11705094
2. Al-Akel FC, Chiperi LE, Eszter VK, Bacârea A. (2024, Dec 5). Streptococcus salivarius Role as a Probiotic in Children's Health and Disease Prophylaxis-A Systematic Review. Life (Basel). 14(12): 1613. https://doi.org/10.3390/life14121613; PMid:39768321 PMCid:PMC11676405
3. Begić G, Badovinac IJ, Karleuša L, Kralik K, Cvijanovic Peloza O et al. (2023). Streptococcus salivarius as an Important Factor in Dental Biofilm Homeostasis: Influence on Streptococcus mutans and Aggregatibacter actinomycetemcomitans in Mixed Biofilm. Int J Mol Sci. 24(8): 7249. https://doi.org/10.3390/ijms24087249; PMid:37108414 PMCid:PMC10139097
4. Cai J, Zhao C, Du Y, Zhang Y, Zhao M, Zhao Q. (2018). Comparative efficacy and tolerability of probiotics for antibiotic-associated diarrhea: Systematic review with network meta-analysis. United European Gastroenterol J. 6(2): 169-180. https://doi.org/10.1177/2050640617736987; PMid:29511547 PMCid:PMC5833232
5. Chung A, Sehgal M, Gavrilita C, Falkos S, Vidal R. (2025). Lactobacillus GG in the Prevention of Antibiotic-Associated Diarrhea in the Pediatric Intensive Care Unit: A Prospective Randomized, Double-Blind Placebo Controlled Intervention. J Pediatr Pharmacol Ther. 30(1): 47-51. https://doi.org/10.5863/1551-6776-30.1.47; PMid:39935568 PMCid:PMC11809540
6. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH et al. (2010). The human oral microbiome. Journal of Bacteriology. 192(19): 5002-5017. https://doi.org/10.1128/JB.00542-10; PMid:20656903 PMCid:PMC2944498
7. Di Pierro F, Colombo M, Zanvit A, Risso P, Rottoli AS. (2014). Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children. Drug Healthc Patient Saf. 6: 15-20. https://doi.org/10.2147/DHPS.S59665; PMid:24600248 PMCid:PMC3928062
8. Di Pierro F, Iqtadar S, Mumtaz SU, Bertuccioli A, Recchia M et al. (2022). Clinical Effects of Streptococcus salivarius K12 in Hospitalized COVID-19 Patients: Results of a Preliminary Study. Microorganisms. 10(10): 1926. https://doi.org/10.3390/microorganisms10101926; PMid:36296202 PMCid:PMC9609702
9. Evans M, Salewski RP, Christman MC, Girard S-A, Tompkins TA. (2016). Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic-associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition. 116(1): 94-103. https://doi.org/10.1017/S0007114516001665; PMid:27169634
10. Feller L, Blignaut E. (2005). Halitosis: a review. SADJ. 60(1): 17-19. PMID: 15861957.
11. Hale JDF, Jain R, Wescombe PA, Burton JP, Simon RR, Tagg JR. (2022). Safety assessment of Streptococcus salivarius M18 a probiotic for oral health. Beneficial Microbes. 13(1): 47-60. https://doi.org/10.3920/BM2021.0107; PMid:35098909
12. Huang N, Li J, Qiao X, Wu Y, Liu Y, Wu C, Li L. (2022). Efficacy of probiotics in the management of halitosis: a systematic review and meta-analysis. BMJ Open. 12(12): e060753. https://doi.org/10.1136/bmjopen-2022-060753; PMid:36600415 PMCid:PMC9809225
13. Iacob S, Iacob DG, Luminos LM. (2019). Intestinal Microbiota as a Host Defense Mechanism to Infectious Threats. Front Microbiol. 9: 3328. https://doi.org/10.3389/fmicb.2018.03328; PMid:30761120 PMCid:PMC6362409
14. Jamali Z, Aminabadi NA, Samiei M, Sighari Deljavan A, Shokravi M, Shirazi S. (2016). Impact of Chlorhexidine Pretreatment Followed by Probiotic Streptococcus salivarius Strain K12 on Halitosis in Children: A Randomised Controlled Clinical Trial. Oral Health Prev Dent. 14(4): 305-313. doi: 10.3290/j.ohpd.a36521.
15. Jugeau S, Pichon C, Martin A et al. (2023). Skin microbiota and wound healing: current perspectives. Journal of Applied Microbiology. 136(5): lxaf111. https://doi.org/10.1093/jambio/lxaf111; PMid:40402851
16. Khalil M, Di Ciaula A, Mahді L, Jaber N, Di Palo DM, Graziani A et al. (2024). Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms. 12(11): 2333. https://doi.org/10.3390/microorganisms12112333; PMid:39597722 PMCid:PMC11596745
17. Lamont RJ, Koo H, Hajishengallis G. (2023). The oral microbiota: dynamic communities and host interactions. Nature Reviews Microbiology. 21(6): 368-382. https://doi.org/10.1038/s41579-023-00864-z.
18. Lee CH, Kho HS, Chung SC, Lee SW, Kim YK. (2003). The relationship between volatile sulfur compounds and major halitosis-inducing factors. J Periodontol. 74(1): 32-37. https://doi.org/10.1902/jop.2003.74.1.32; PMid:12593593
19. Li X, Zhang Z, Bai H, Liu Z. (2024). Analysis of vaginal microbiota during postpartum and postmenopausal periods based on metagenomics. BMC Microbiol. 2024 Nov 27;24(1):501. doi: https://doi.org/10.1186/s12866-024-03648-z; PMid:39604824 PMCid:PMC11600617
20. Lu SY. (2021). Oral Candidosis: Pathophysiology and Best Practice for Diagnosis, Classification, and Successful Management. J Fungi (Basel). 7(7): 555. https://doi.org/10.3390/jof7070555; PMid:34356934 PMCid:PMC8306613
21. Lloyd-Price J, Abu-Ali G, Huttenhower C. (2016). The healthy human microbiome. Genome Med. 8(1): 51. https://doi.org/10.1186/s13073-016-0307-y; PMid:27122046 PMCid:PMC4848870
22. Mohammad AS, Dariush MT, Mojtaba MV. (2025). The Impact and Role of Probiotic Bacterium Streptococcus Salivarius on Oral and Dental Health. Health. J Pharm Drug Dev. 3(1): 53-64.
23. Nyankovskyy S, Nyankovska О, Yatsula M, Horodylovska M, Tomkiv Y et al. (2021). Features of the use of probiotics for antibiotic-associated diarrhea in children. Child's health. 15(2): 92-98. https://doi.org/10.22141/2224-0551.15.2.2020.200272
24. Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU et al. (2021). Lactobacillus rhamnosus GG Orchestrates an Antitumor Immune Response. Cell Mol Gastroenterol Hepatol. 12(4): 1311-1327. https://doi.org/10.1016/j.jcmgh.2021.06.001; PMid:34111601 PMCid:PMC8463873
25. Patel M. (2022). Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens;11(3):335. https://doi.org/10.3390/pathogens11030335; PMid:35335659 PMCid:PMC8953496
26. Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K et al. (2024). Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms. 12(9): 1797. https://doi.org/10.3390/microorganisms12091797; PMid:39338471 PMCid:PMC11434369
27. Salim HP, Mallikarjun SB, Raju S, Surendranath AR. (2023). Randomized Clinical Trial of Oral Probiotic Streptococcus salivarius M18 on Salivary Streptococcus mutans in Preprimary Children. Int J Clin Pediatr Dent. 16(2): 259-263. https://doi.org/10.5005/jp-journals-10005-2527; PMid:37519958 PMCid:PMC10373771
28. Sampaio-Maia B, Caldas IM, Araujo R. (2023). The oral microbiome in dental health and disease. Current Oral Health Reports. 10(1): 45-54. https://doi.org/10.1007/s40496-023-00328-5.
29. Sanz Y, Cryan JF, Deschasaux-Tanguy M et al. (2025). The gut microbiome connects nutrition and human health. Nat Rev Gastroenterol Hepatol. 22: 534-555. https://doi.org/10.1038/s41575-025-01077-5; PMid:40468006
30. Sarlin S, Koskela U, Honkila M, Tähtinen PA, Pokka T et al. (2023). Streptococcus salivarius Probiotics to Prevent Acute Otitis Media in Children: A Randomized Clinical Trial. JAMA Netw Open. 6(11): e2340608. https://doi.org/10.1001/jamanetworkopen.2023.40608; PMid:37917062 PMCid:PMC10623191
31. Satravaha Y, Thitiwatpalakarn K, Peanchitlertkajorn S, Boonpratham S, Chaweewannakorn C, Sipiyaruk K. (2024). Development and validation of the Thai Halitosis Associated Life-Quality Test (T-HALT): an evaluation of psychometric properties. BMC Oral Health. 24(1): 1196. https://doi.org/10.1186/s12903-024-04926-y; PMid:39379890 PMCid:PMC11462733
32. Shi CW, Cheng MY, Yang X, Lu YY, Yin HD, Zeng Y et al. (2020). Probiotic Lactobacillus rhamnosus GG Promotes Mouse Gut Microbiota Diversity and T Cell Differentiation. Front Microbiol. 11: 607735. https://doi.org/10.3389/fmicb.2020.607735; PMid:33391230 PMCid:PMC7773731
33. Szajewska H, Kołodziej M. (2015). Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther. 42(10): 1149-1157. https://doi.org/10.1111/apt.13404; PMid:26365389
34. Tagg JR, Harold LK, Jain R, Hale JDF. (2023). Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front Microbiol. 14: 1161155. https://doi.org/10.3389/fmicb.2023.1161155; PMid:37056747 PMCid:PMC10086258
35. Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X et al. (2021). Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients. 13(10): 3319. https://doi.org/10.3390/nu13103319; PMid:34684320 PMCid:PMC8541209
36. Ubeda C, Djukovic A, Isaac S. (2017). Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology. 6(2): e128. https://doi.org/10.1038/cti.2017.2; PMid:28243438 PMCid:PMC5311919
37. Verma D, Garg P, Dubey A. (2024). Role of the oral microbiome in systemic health and disease. Microorganisms. 12(9): 179. https://doi.org/10.3390/microorganisms12091797; PMid:39338471 PMCid:PMC11434369
38. Wang L, Liang HL, Weichselbaum R. (2022). Lactobacillus rhamnosus GG re-shapes gut microbiota and triggers STING-type I IFN-dependent antitumor immunity. The Journal of Immunology. 208(1): 120.04. https://doi.org/10.4049/jimmunol.208.Supp.120.04
39. Wenus C, Goll R, Loken E et al. (2008). Prevention of antibiotic-associated diarrhoea by a fermented probiotic milk drink. Eur J Clin Nutr. 62: 299-301. https://doi.org/10.1038/sj.ejcn.1602718; PMid:17356555
40. Willner D, Furlan M, Haynes MR et al. (2023). Metagenomic analysis of oral viral communities. Virology Journal. 20: 112. https://doi.org/10.1186/s12985-023-02010-0.
41. Wischmeyer PE, Tang H, Ren Y, Bohannon L, Ramirez ZE, Andermann TM et al. (2022). Daily Lactobacillus Probiotic versus Placebo in COVID-19-Exposed Household Contacts (PROTECT-EHC): A Randomized Clinical Trial. Preprints. medRxiv. https://doi.org/10.1101/2022.01.04.21268275
42. Zeng Q, Feng X, Hu Y, Su S. (2025). The human gut microbiota is associated with host lifestyle: a comprehensive narrative review. Frontiers in Microbiology. 16: 1549160. https://doi.org/10.3389/fmicb.2025.1549160; PMid:40625617 PMCid:PMC12233163
43. Ziaei N, Hosseinpour S, Nazari H, Rezaei M, Rezaei K. (2019). Halitosis And Its Associated Factors Among Kermanshah High School Students (2015). Clin Cosmet Investig Dent. 11: 327-338. https://doi.org/10.2147/CCIDE.S215869; PMid:31695509 PMCid:PMC6815781
