- The impact of probiotics on immune response formation and the course of allergic diseases in children: the role Lactobacillus rhamnosus GG
The impact of probiotics on immune response formation and the course of allergic diseases in children: the role Lactobacillus rhamnosus GG
Modern Pediatrics. Ukraine. (2025).5(149): 77-84. doi: 10.15574/SP.2025.9(149).7784
Umanets T. R., Buratynska A. A.
SI «Ukrainian center of maternity and childhood of the NAMS of Ukraine», Kyiv
For citation: Umanets TR, Buratynska AA. (2025). The impact of probiotics on immune response formation and the course of allergic diseases in children: the role Lactobacillus rhamnosus GG. Modern Pediatrics. Ukraine. 5(149): 77-84. doi: 10.15574/SP.2025.9(149).7784.
Article received: Jun 12, 2025. Accepted for publication: Sep 10, 2025.
The aim of the study is to present an overview of current data on the influence of microbiota on the formation of the immune response and the importance of probiotics in the prevention and treatment of allergic diseases in children.
Over the past decades, the prevalence of allergic diseases (AD) has been rapidly increasing, especially in low- and middle-income countries. Recent studies indicate an important role of microbiota in the development of AD. The “microbiome” or “biodiversity” theory of the occurrence of AD is based on the idea that the composition and diversity of the human microbiota, especially the intestinal one, are crucial for the formation of the immune system and tolerance to allergens. Probiotics are live beneficial microorganisms that, when taken in adequate quantities, have a positive effect on human health, including supporting the immune system, anti-infective action, lowering cholesterol levels, improving nutrient absorption, etc. Lactobacillus rhamnosus is one of the most studied strains of probiotics with potential immunomodulatory function. LGG synthesizes a biofilm, which is a mechanical protection for the mucosa, reduces apoptosis of the intestinal epithelium, maintains the integrity of the cytoskeleton, and inhibits the growth of pathogenic microorganisms. LGG also promotes the differentiation of regulatory T cells (Treg) and reduces the activity of T-helper 2 cells, which play a central role in allergic inflammation. LGG is the most effective probiotic in the treatment and prevention of AD. Further studies of the immunomodulatory effects of different strains of probiotics are needed for a personalized approach in children at risk and with AD.
No conflict of interest was declared by the author.
Keywords: children, allergic diseases, probiotics, Lactobacillus rhamnosus GG, Active Flora Baby+.
REFERENCES
1. Aitoro R, Paparo L, Amoroso A, Di Costanzo M et al. (2017). Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients. 9(7): 672. https://doi.org/10.3390/nu9070672; PMid:28657607 PMCid:PMC5537787
2. Akagawa S, Kaneko K. (2022). Gut microbiota and allergic diseases in children. Allergol Int. 71(3): 301-309. https://doi.org/10.1016/j.alit.2022.02.004; PMid:35314107
3. Augustine T, Kumar M, Al Khodor S, van Panhuys N. (2023). Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clin Rev Allergy Immunol. 65(1): 43-71. https://doi.org/10.1007/s12016-022-08939-9; PMid:35648372 PMCid:PMC10326151
4. Berni Canani R, Di Costanzo M, Bedogni G et al. (2017). Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow's milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 139(6): 1906-1913.e4. https://doi.org/10.1016/j.jaci.2016.10.050; PMid:28043872
5. Boggio Marzet C, Burgos F, Del Compare M, Gerold I et al. (2022). Approach to probiotics in pediatrics: the role of Lactobacillus rhamnosus GG. Arch. Argent Pediatr. 120(1): e1-e7. https://doi.org/10.5546/aap.2022.eng.e1
6. Bognanni A, Fiocchi A, Arasi S, Chu D et al. (2024). World Allergy Organization Journal. 17: 100888. https://doi.org/10.1016/j.waojou.2024.100888; PMid:38706757 PMCid:PMC11068951
7. Buratynska АА, Umanets TR. (2024). Allergic diseases in children: a modern view on the problem. Ukrainian Journal of Perinatology and Pediatrics. 1(97): 84-90. https://doi.org/10.15574/PP.2024.97.84
8. Cabana MD, McKean M, Caughey AB, Fong L et al. (2017). Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics. 140: e20163000. https://doi.org/10.1542/peds.2016-3000; PMid:28784701 PMCid:PMC5574725
9. Capurso L. (2019). Thirty Years of Lactobacillus rhamnosus GG: A Review. J Clin Gastroenterol. 53; Suppl 1: S1-S41. https://doi.org/10.1097/MCG.0000000000001170; PMid:30741841
10. Cukrowska B, Ceregra A, Maciorkowska E, Surowska B et al. (2021). The effectiveness of probiotic Lactobacillus rhamnosus and Lactobacillus casei strains in children with atopic dermatitis and cow's milk protein allergy: a multicenter, randomized, double-blind, placebo-controlled study. Nutrients. 13: 1169. https://doi.org/10.3390/nu13041169; PMid:33916192 PMCid:PMC8066586
11. Di Costanzo M, Vella A, Infantino C, Morini R, Bruni S et al. (2024). Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients. 16(2): 297. https://doi.org/10.3390/nu16020297; PMid:38257190 PMCid:PMC10819136
12. Eichenfield LF, Stripling S, Fung S, Cha A et al. (2022). Recent Developments and Advances in Atopic Dermatitis: A Focus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Paediatr Drugs. 24(4): 293-305. https://doi.org/10.1007/s40272-022-00499-x; PMid:35698002 PMCid:PMC9191759
13. Fazlollahi M, Chun Y, Grishin A, Wood RA et al. (2018). Early-life gut microbiome and egg allergy. Allergy. 73(7): 1515-1524. https://doi.org/10.1111/all.13389; PMid:29318631 PMCid:PMC6436531
14. Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K et al. (2015). World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics. World Allergy Organ J. 8(1): 4. https://doi.org/10.1186/s40413-015-0055-2; PMid:25628773 PMCid:PMC4307749
15. Fujimura KE, Sitarik AR, Havstad S, Lin DL et al. (2016). Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 22: 1187e91. https://doi.org/10.1038/nm.4176; PMid:27618652 PMCid:PMC5053876
16. Furci F, Caminati M, Crisafulli E, Senna G, Gangemi S. (2023). The intriguing possibility of using probiotics in allergen-specific immunotherapy. World Allergy Organ J. 16(2): 100751. https://doi.org/10.1016/j.waojou.2023.100751; PMid:36852412 PMCid:PMC9958496
17. Genuneit J, Standl M. (2022). Epidemiology of Allergy: Natural Course and Risk Factors of Allergic Diseases. Handb Exp Pharmacol. 268: 21-27. https://doi.org/10.1007/164_2021_507; PMid:34165634
18. Global Initiative for Asthma. (2025). Global Strategy for Asthma Management and Prevention. (last accessed: 20.06.2025). URL: https://ginasthma.org/2025-gina-strategy-report/.
19. Gorska S, Schwarzer M, Srutkova D, Hermanova P et al. (2017). Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model. Microb Biotechnol. 10(3): 586-593. https://doi.org/10.1111/1751-7915.12606; PMid:28165193 PMCid:PMC5404188
20. Gu S, Yang D, Liu C, Xue W. (2023). The role of probiotics in prevention and treatment of food allergy, Food Science and Human Wellness, 12(3): 681-690. https://doi.org/10.1016/j.fshw.2022.09.001
21. Guo M, Liu H, Yu Y, Zhu X et al. (2023). Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes. 15: 2190304. https://doi.org/10.1080/19490976.2023.2190304; PMid:36941563 PMCid:PMC10038048
22. Guvenç IA, Muluk NB, Mutlu FS, Eşki E et al. (2016). Do probiotics have a role in the treatment of allergic rhinitis? A comprehensive systematic review and meta-analysis. Am J Rhinol Allergy. 30(5): 157-175. https://doi.org/10.2500/ajra.2016.30.4354; PMid:27442711
23. Haahtela T. (2022). Biodiversity for resilience – What is needed for allergic children. Pediatr Allergy Immunol. 33: e13779. https://doi.org/10.1111/pai.13779; PMid:35616890
24. Haahtela T, Alenius H, Lehtimaki J, Sinkkonen A et al. (2021). Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy, 76: 3613-3626. https://doi.org/10.1111/all.14895; PMid:33959980
25. Hajavi J, Esmaeili S-A, Varasteh A-R et al. (2018). The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol. 234: 2386-2398. https://doi.org/10.1002/jcp.27263; PMid:30192002
26. Halken S, Muraro A, de Silva D et al. (2021). European Academy of Allergy and Clinica Immunology Food Allergy and Anaphylaxis Guidelines Group. EAACI guideline: Preventing the development of food allergy in infants and young children. Pediatr Allergy Immunol. 32: 843-858. https://doi.org/10.1111/pai.13496; PMid:33710678
27. Homayouni-Rad, A. (2024). Probiotics: Definition and Characterization. In Probiotic Ice Cream, A. Homayouni-Rad (Ed.). https://doi.org/10.1002/9781119081265.ch2
28. Hou K, Wu ZX, Chen XY, Wang JQ, et al. (2022). Microbiota in health and diseases. Signal Transduct Target Ther. 7(1): 135. https://doi.org/10.1038/s41392-022-00974-4; PMid:35461318 PMCid:PMC9034083
29. Kalb B, Khaleva E, Giovannini M et al. (2025). Trajectories of allergic diseases in children: Destination unknown? Pediatr Allergy Immunol. 36: e70131. https://doi.org/10.1111/pai.70131; PMid:40589146 PMCid:PMC12209760
30. Lin J, Zhang Y, He C, Dai J. (2018). Probiotics supplementation in children with asthma: a systematic review and meta-analysis. J Paediatr Child Health. 54(9): 953-961. https://doi.org/10.1111/jpc.14126; PMid:30051941
31. Los-Rycharska E, Golębiewski M, Sikora M, Grzybowski T et al. (2021). Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients. 13(5): 1682. https://doi.org/10.3390/nu13051682; PMid:34063398 PMCid:PMC8156695
32. Majamaa H, Isolauri E, Saxelin M, Vesikari T. (1995). Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr. 20(3): 333-338. https://doi.org/10.1097/00005176-199504000-00012; PMid:7608829
33. McFarland LV, Evans CT, Goldstein EJC. (2018). Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front. Med. 5: 124. https://doi.org/10.3389/fmed.2018.00124; PMid:29868585 PMCid:PMC5949321
34. Mishra A, Lai GC, Yao LJ, Aung TT et al. (2021). Microbial exposure during early human development primes fetal immune cells. Cell. 184(13): 3394-3409.e20. https://doi.org/10.1016/j.cell.2021.04.039; PMid:34077752 PMCid:PMC8240556
35. Mitselou N, Hallberg J, Stephansson O, Almqvist C et al. (2018). Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children. J Allergy Clin Immunol. 142(5): 1510-1514.e2. https://doi.org/10.1016/j.jaci.2018.06.044; PMid:30213656
36. Nocerino R, Bedogni G, Carucci L, Aquilone G et al. (2025). Long term impact of formula choice in children with cow milk protein allergy: 6-year follow-up of the Atopic March Cohort Study. Clin Nutr. 48: 134-143. https://doi.org/10.1016/j.clnu.2025.03.026; PMid:40209535
37. Nocerino R, Bedogni G, Carucci L, Cosenza L et al. (2021). The Impact of Formula Choice for the Management of Pediatric Cow's Milk Allergy on the Occurrence of Other Allergic Manifestations: The Atopic March Cohort Study. J Pediatr. 232: 183-191.e3. https://doi.org/10.1016/j.jpeds.2021.01.059; PMid:33524387
38. Roduit C, Frei R, Ferstl R, Loeliger S et al. (2019). High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 74(4): 799-809. https://doi.org/10.1111/all.13660; PMid:30390309
39. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S et al. (2018). A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 73(1): 145-152. https://doi.org/10.1111/all.13232; PMid:28632934 PMCid:PMC5921051
40. Savino F, Montanari P, Galliano I, Dapra V, Bergallo M. (2020). Lactobacillus rhamnosus GG (ATCC 53103) for the Management of Infantile Colic: A Randomized Controlled Trial. Nutrients. 12(6): 1693. https://doi.org/10.3390/nu12061693; PMid:32517123 PMCid:PMC7352391
41. Sbihi H, Boutin RC, Cutler C, Suen M et al. (2019). Thinking igger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. 74(11): 2103-2115. https://doi.org/10.1111/all.13812; PMid:30964945
42. Senn V, Bassler D, Choudhury R, Scholkmann F et al. (2020). Microbial Colonization From the Fetus to Early Childhood-A Comprehensive Review. Front Cell Infect Microbiol. 10: 573735. https://doi.org/10.3389/fcimb.2020.573735; PMid:33194813 PMCid:PMC7661755
43. Seppo AE, Autran CA, Bode L, Jarvinen KM. (2017). Human milk oligosaccharides and development of cow's milk allergy in infants. J Allergy Clin Immunol. 139(2): 708-711.e5. https://doi.org/10.1016/j.jaci.2016.08.031; PMid:27702672 PMCid:PMC5303147
44. Simonyte Sjodin K, Hammarström M-L, Ryden P et al. (2019). Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy. 74: 176-185. https://doi.org/10.1111/all.13485; PMid:29786876
45. Smout J, Valentin C, Delbauve S, Pauwels J et al. (2023). Maternal Lactobacillus rhamnosus administration impacts neonatal CD4 T-cell activation and prevents murine T helper 2-type allergic airways disease. Front Immunol. 13: 1082648. https://doi.org/10.3389/fimmu.2022.1082648; PMid:36685549 PMCid:PMC9847498
46. Spacova I, Van Beeck W, Seys S, Devos F et al. (2020). Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes 11: 1729-1744. https://doi.org/10.1080/19490976.2020.1766345; PMid:32522072 PMCid:PMC7524350
47. Srutkova D, Kozakova H, Novotna T, Gorska S et al. (2023). Exopolysaccharide from Lacticaseibacillus rhamnosus induces IgA production in airways and alleviates allergic airway inflammation in mouse model. Eur J Immunol. 53(7): e2250135. https://doi.org/10.1002/eji.202250135; PMid:37177812
48. Stern J, Pier J, Litonjua AA. (2020). Asthma epidemiology and risk factors. Semin Immunopathol. 42(1): 5-15. https://doi.org/10.1007/s00281-020-00785-1; PMid:32020334
49. Stinson LF, Boyce MC, Payne MS, Keelan JA. (2019). The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front Microbiol. 10: 1124. https://doi.org/10.3389/fmicb.2019.01124; PMid:31231319 PMCid:PMC6558212
50. Su GL, Ko CW, Bercik P, Falck-Ytter Y et al. (2020). AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 159(2): 697-705. https://doi.org/10.1053/j.gastro.2020.05.059; PMid:32531291
51. Sun N, Ogulur I, Mitamura Y, Yazici D et al. (2024). The epithelial barrier theory and its associated diseases. Allergy. 79(12): 3192-3237. https://doi.org/10.1111/all.16318; PMid:39370939 PMCid:PMC11657050
52. Tan-Lim CSC, Esteban-Ipac NAR. (2018). Probiotics as treatment for food allergies among pediatric patients: a meta-analysis. World Allergy Organ J. 11(1): 25. https://doi.org/10.1186/s40413-018-0204-5; PMid:30425779 PMCid:PMC6218986
53. Torres S, Fabersani E, Marquez A, Gauffin-Cano P. (2019). Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 58(1): 27-43. https://doi.org/10.1007/s00394-018-1790-2; PMid:30043184
54. Tramper-Stranders G, Ambrożej D, Arcolaci A et al. (2021). The EAACI Task Force Conscious, rational use of antibiotics in allergic diseases. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy. 76: 3276-3291. https://doi.org/10.1111/all.15046; PMid:34390006
55. Tsuge M, Ikeda M, Matsumoto N, Yorifuji T, Tsukahara H. (2021). Current Insights into Atopic March. Children (Basel). 8(11): 1067. https://doi.org/10.3390/children8111067; PMid:34828780 PMCid:PMC8620020
56. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA et al. (2018). The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity. 49: 1116-1131.e7. https://doi.org/10.1016/j.immuni.2018.10.013; PMid:30446387 PMCid:PMC6345170
57. Uwaezuoke SN, Ayuk AC, Eze JN, Odimegwu CL et al. (2022). Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: A systematic review of randomized controlled trials. Front Pediatr. 10: 956141. https://doi.org/10.3389/fped.2022.956141; PMid:36061384 PMCid:PMC9437454
58. Wang J, Zhou Y, Zhang H, Hu L et al. (2023). Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Targe Ther. 8(1): 138. https://doi.org/10.1038/s41392-023-01344-4; PMid:36964157 PMCid:PMC10039055
59. Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J et al. (2018). Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 9(1): 5091. https://doi.org/10.1038/s41467-018-07631-x; PMid:30504906 PMCid:PMC6269548
60. Warren CM, Jiang J, Gupta RS. (2020). Epidemiology and Burden of Food Allergy. Curr Allergy Asthma Rep. 20(2): 6. https://doi.org/10.1007/s11882-020-0898-7; PMid:32067114 PMCid:PMC7883751
61. Wei X, Jiang P, Liu J, Sun R, Zhu L. (2020). Association between probiotic supplementation and asthma incidence in infants: a meta-analysis of randomized controlled trials. J Asthma. 57(2): 167-178. https://doi.org/10.1080/02770903.2018.1561893; PMid:30656984
62. Wise SK, Lin SY, Toskala E, Orlandi RR et al. (2018). International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol. 8(2): 108-352. https://doi.org/10.1002/alr.22073; PMid:29438602 PMCid:PMC7286723
63. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. (2014). The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 25: 428-438. https://doi.org/10.1111/pai.12232; PMid:24899389
64. Yamagishi M, Akagawa S, Akagawa Y, Nakai Y et al. (2021). Decreased butyric acid-producing bacteria in gut microbiota of children with egg allergy. Allergy. 76: 2279-2282. https://doi.org/10.1111/all.14795; PMid:33650199
65. Yang L, Fu J, Zhou Y. (2020). Research progress in atopic march. Front. Immunol. 11: 1907. https://doi.org/10.3389/fimmu.2020.01907; PMid:32973790 PMCid:PMC7482645
66. Xiaohua L, Yiting D, Qin L, Yang Z, Shumao W, Li P et al. (2025). Lactobacillus GG and other probiotics in pediatric food allergy treatment: a network meta-analysis. Front Nutr. 12: 1565436. https://doi.org/10.3389/fnut.2025.1565436; PMid:40529417 PMCid:PMC12172551
67. Xi Z, Fenglin X, Yun Z, Chunrong L. (2025). Efficacy of probiotics in the treatment of allergic diseases: a meta-analysis Front. Nutr. 12: 1502390. https://doi.org/10.3389/fnut.2025.1502390; PMid:40104820 PMCid:PMC11913692
68. Zajac AE, Adams AS, Turner JH. (2015). A systematic review and meta-analysis of probiotics for the treatment of allergic rhinitis. Int Forum Allergy Rhinol. 5(6): 524. https://doi.org/10.1002/alr.21492; PMid:25899251 PMCid:PMC4725706
69. Zuccotti G, Meneghin F, Aceti A, Barone G et al. (2015). Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 70(11): 1356-1371. https://doi.org/10.1111/all.12700; PMid:26198702
