• Efficacy and safety of the medicine Bactek-MV130 in the prevention of recurrent respiratory infections in children
en To content Full text of article

Efficacy and safety of the medicine Bactek-MV130 in the prevention of recurrent respiratory infections in children

Modern Pediatrics. Ukraine. (2025).6(150): 54-62. doi: 10.15574/SP.2025.6(150).5462
Marushko Yu. V., Khomych O. V.
Bogomolets National Medical University, Kyiv, Ukraine

For citation: Marushko YuV, Khomych OV. (2025). Efficacy and safety of the medicine Bactek-MV130 in the prevention of recurrent respiratory infections in children. Modern Pediatrics. Ukraine. 6(150): 54-62. doi: 10.15574/SP.2025.6(150).5462.
Article received: Jun 28, 2025. Accepted for publication: Sep 16, 2025.

Recurrent respiratory infections (RRIs) in children remain one of the leading medical and social challenges of pediatric age. The high incidence contributes to a substantial burden on healthcare systems, frequent hospitalizations, the development of antibiotic resistance, and a decline in quality of life. Primary preventive measures include vaccination, hand hygiene, air quality control, nasal mucosa hydration, adequate nutrition, maintenance of optimal vitamin D levels, age-appropriate physical activity, hardening procedures, regular sleep, and mental well-being support. Despite these strategies, children with RRIs often require additional immunotherapeutic interventions.
Aim – to summarize current evidence on the efficacy and safety of the bacterial vaccine Bactek-MV130 for the prevention of RRIs in children.
A systematic review of scientific publications from 2010 to 2025 was conducted using the PubMed, Scopus, and Web of Science databases. The analysis included the use of the bacterial vaccine Bactek-MV130. Bactek-MV130 is administered sublingually and contains inactivated bacterial components representing the most common respiratory pathogens. Clinical data demonstrate a significant reduction in the incidence of RRIs in both children and adults, along with shorter illness duration and reduced need for antibiotic therapy. Immunological studies indicate enhanced activation of innate defense mechanisms and the establishment of long-term immunological memory at the T-cell level. The drug exhibits a high safety profile. The sublingual route of administration allows simultaneous stimulation of mucosal and systemic immune responses, providing comprehensive preventive efficacy.
Conclusions. RRIs remain a prevalent pediatric condition requiring effective and safe preventive approaches. Analysis of current scientific data has shown that sublingual administration of Bactek-MV130 — two doses under the tongue once daily for three months — is an effective preventive strategy that reduces the frequency of respiratory infection recurrences by 68-80% and significantly reduce the need for antibiotic therapy. The drug demonstrates a favorable safety profile, is well tolerated across pediatric age groups, and can be integrated into comprehensive prevention programs for RRIs.
No conflict of interests was declared by the authors.
Keywords: Bactek-MV130, recurrent respiratory infections, children.

REFERENСES

1. Angelina A, Benito-Villalvilla C, Subiza JL, Palomares O. (2023). Trained immunity-based vaccines: A ready-to-act strategy for fighting viral outbreaks. Frontiers in Immunology. 14: 1196883. https://doi.org/10.3389/fimmu.2023.1196883.

2. Brandi P, Conejero L, Montalban-Hernandez K, del Fresno C, Iborra S, Palomares O. (2022). Induction of trained immunity by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Reports. 38(13): 110467. https://doi.org/10.1016/j.celrep.2022.110467; PMid:35263594 PMCid:PMC8957708

3. Cai H, Chen X, Liu Y, Chen Y, Zhong G, Chen X et al. (2025). Lactate activates trained immunity by fueling the tricarboxylic acid cycle and regulating histone lactylation. Nature communications. 16(1): 3230. https://doi.org/10.1038/s41467-025-58563-2; PMid:40185732 PMCid:PMC11971257

4. Candelas G, Villegas Á, Sánchez-Ramón S. (2024). Mucosal trained immunity-based vaccines: Cutting recurrent infections in autoimmune patients on immunosuppression. Journal of Allergy and Clinical Immunology. 154(5): 1120-1122. https://doi.org/10.1016/j.jaci.2024.09.011; PMid:39307289

5. Chiappini E, Santamaria F, Marseglia GL, Marchisio P, Galli L, Cutrera R et al. (2021). Prevention of recurrent respiratory infections : Inter-society Consensus. Italian journal of pediatrics. 47(1): 211. https://doi.org/10.1186/s13052-021-01150-0; PMid:34696778 PMCid:PMC8543868

6. Conejero L, Montalban-Hernandez K, Bravo-Robles L, Fresno C, Iborra S. (2025). Mucosal immunotherapy based on trained immunity for the prevention of respiratory infections. Trends in Immunology. 46(4): 270-278. https://doi.org/10.1016/j.it.2025.02.012; PMid:40113536

7. De Martino M, Ballotti S. (2007). The child with recurrent respiratory infections: Normal or not? Pediatric Allergy and Immunology. 18; Suppl 18: 13-18. https://doi.org/10.1111/j.1399-3038.2007.00625.x; PMid:17767600

8. Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T et al. (2021). Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature immunology. 22(1): 2-6. https://doi.org/10.1038/s41590-020-00845-6; PMid:33293712 PMCid:PMC8020292

9. García González L-A, Arrutia Díez F. (2019). Mucosal bacterial immunotherapy with MV130 significantly reduces the need for tonsillectomy in adults with recurrent tonsillitis. Human Vaccines & Immunotherapeutics. 15(9): 2150-2153. https://doi.org/10.1080/21645515.2019.1581537; PMid:30779677 PMCid:PMC6773391

10. Guevara-Hoyer K, Saz-Leal P, Diez-Rivero CM, Ochoa-Gurullon J, Fernandez-Arquero M et al. (2020). Trained immunity-based vaccines as a prophylactic strategy in common variable immunodeficiency: A proof-of-concept study. Biomedicines. 8(7): 203. https://doi.org/10.3390/biomedicines8070203; PMid:32660100 PMCid:PMC7400202

11. Harashchenko T, Umanets T, Podolskiy V, Kaminska T, Marushko Y, Podolskiy V et al. (2023). Epidemiological, Clinical, and Laboratory Features of Children with SARS-CoV-2 in Ukraine. Journal of mother and child. 27(1): 33-41. https://doi.org/10.34763/jmotherandchild.20232701.d-23-00012.

12. Herrera-García JC, Arizpe-Bravo AB, Hernández-Treviño V, Sánchez S, Landa-Alvarado PD, Carrasco-Castillo A et al. (2024). Mexican Delphi Consensus for the use of immunotherapy with MV130 vaccine in patients with recurrent respiratory infectious diseases (Expert Panel). Journal of Pulmonology Research and Reports. 6(12): 1-4. https://doi.org/10.47363/JPRR/2024(6)187

13. Hyshchak TV, Marushko YuV, Dmytryshyn OA, Kostynska NG, Dmytryshyn BYa. (2022). Tolerance to physical activity and its changes in children after COVID-19 (literature review, own data). Modern Pediatrics. Ukraine. 5(125): 108-116. https://doi.org/10.15574/SP.2022.125.108

14. Inmunotek SL. (2023). Bactek-MV130: Instructions for medical use. URL: https://tabletki.ua/Bactek-MV-130/1078217/.

15. Kim DY, Mo YH, Kim KW, Hong SM, Park A, Jang BH et al. (2024). Feasibility of home-based pulmonary rehabilitation of pediatric patients with chronic respiratory diseases. Children. 11(5): 534. https://doi.org/10.3390/children11050534; PMid:38790529 PMCid:PMC11119592

16. Martín-Cruz L, Benito-Villalvilla C, Angelina A, Subiza JL, Palomares O. (2024). Trained immunity-based vaccines for infections and allergic diseases. Journal of Allergy and Clinical Immunology. 154(5): 1085-1094. https://doi.org/10.1016/j.jaci.2024.09.009; PMid:39303893

17. Marushko YuV, Esipova SI, Gishchak TV. (2021). Influence of vitamin D provision on the course of acute respiratory infections in children. Modern Pediatrics. Ukraine. 7(119): 73-80. https://doi.org/10.15574/SP.2021.119.73

18. Marushko YuV, Khomych OV. (2025). Features of respiratory rehabilitation in children after COVID-19 according to Ukrainian and global guidelines. Child's Health. 20(1): 88-96. https://doi.org/10.22141/2224-0551.20.1.2025.1795

19. Marushko YuV, Khomych OV. (2025). Post-COVID-19 health in children: from understanding pathogenesis to effective rehabilitation. Modern Pediatrics. Ukraine. 2(146): 119-127. https://doi.org/10.15574/SP.2025.2(146).119127

20. Montalbán-Hernández K, Cogollo-García A, Girón de Velasco-Sada P, Caballero R, Casanovas M et al. (2024). MV130 in the prevention of recurrent respiratory tract infections: A retrospective real-world study in children and adults. Vaccines. 12(2): 172. https://doi.org/10.3390/vaccines12020172; PMid:38400155 PMCid:PMC10893268

21. Montalban-Hernandez K, Conejero L, García-González L-A, del Fresno C, Iborra S. (2022). Mucosal bacterial immunotherapy attenuates the development of experimental colitis by reducing inflammation through myeloid cell regulation. Frontiers in Immunology. 13: 1023456. https://doi.org/10.3389/fimmu.2022.1023456.

22. Moorlag SJCFM, Khan N, Novakovic B, Kaufmann E, Jansen T, van Crevel R et al. (2020). β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell reports. 31(7): 107634. https://doi.org/10.1016/j.celrep.2020.107634; PMid:32433977 PMCid:PMC7242907

23. Nieto A, Mazón Á, Nieto M, Calderón R, Calafforra S, Selva B et al. (2021). Mucosal bacterial immunotherapy with MV130 prevents recurrent wheezing in children: A randomized, double-blind, placebo-controlled clinical trial. American Journal of Respiratory and Critical Care Medicine. 204(4): 462-472. https://doi.org/10.1164/rccm.202003-0520OC; PMid:33705665 PMCid:PMC8480240

24. Ochoa-Grullón J, Sánchez-Ramón S, de Diego R, Carbone J, Subiza JL, Fernández-Arquero M. (2022). Sublingual bacterial vaccination reduces recurrent infections in autoimmune patients under immunosuppressive therapy. Frontiers in Immunology. 13: 876451. https://doi.org/10.3389/fimmu.2021.675735; PMid:34149711 PMCid:PMC8212043

25. Ochoa-Grullón J, Saz-Leal P, Brotons P, del Fresno C, López-Ruz MA, de la Fuente M et al. (2021). Trained immunity-based vaccine MV130 in B-cell hematological malignancies with recurrent infections: A new therapeutic approach. Frontiers in Immunology. 11: 611566. https://doi.org/10.3389/fimmu.2020.611566; PMid:33679698 PMCid:PMC7928395

26. Palomares O, Subiza JL, Benito-Villalvilla C, Angelina A. (2023). Trained immunity-based vaccines: A new paradigm in the design of broad-spectrum anti-infectious agents. Frontiers in Immunology. 14: 1210548. https://doi.org/10.3389/fimmu.2023.1210548.

27. Palomares O, Subiza JL, Quinti I, Sánchez-Ramón S. (2023). Bacterial vaccines and trained immunity in children: Clinical evidence and mechanisms. Frontiers in Immunology. 14: 112233. https://doi.org/10.3389/fimmu.2023.112233.

28. Pasternak G, Lewandowicz-Uszyńska A, Królak-Olejnik B. (2020). Recurrent respiratory tract infections in children. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 49(286): 260-266.

29. Pérez-Sancristóbal I, de la Fuente E, Álvarez-Hernández MP, Guevara-Hoyer K, Morado C, Martínez-Prada C et al. (2023). Long-term benefit of perlingual polybacterial vaccines in patients with systemic autoimmune diseases and active immunosuppression. Biomedicines. 11(4): 1168. https://doi.org/10.3390/biomedicines11041168; PMid:37189785 PMCid:PMC10136188

30. Rehill AM, McCluskey S, Ledwith AE, Ryan TAJ, Ünlü B, Leon G et al. (2025). Trained immunity causes myeloid cell hypercoagulability. Science advances. 11(10): eads0105. https://doi.org/10.1126/sciadv.ads0105; PMid:40053582 PMCid:PMC11887800

31. Siraui C, Benito-Villalvilla C, Sánchez-Ramón S, Sirvent S, Díez-Rivero CM, Conejero L et al. (2018). Human dendritic cells activated with MV130 induce Th1, Th17 and IL-10 responses via RIPK2 and MyD88 signalling pathways. European Journal of Immunology. 48(1): 180-193. https://doi.org/10.1002/eji.201747024; PMid:28799230 PMCid:PMC5813220

32. Subiza JL, Palomares O, Quinti I. (2022). Sublingual MV130 bacterial vaccine in recurrent respiratory tract infections: Clinical efficacy and safety. Pediatric Allergy and Immunology. 33(5): e13765. https://doi.org/10.1111/pai.13765; PMid:35338730

33. Subiza JL, Palomares O, Quinti I, Sánchez-Ramón S. (2021). Editorial: Trained immunity-based vaccines. Frontiers in Immunology. 12: 716296. https://doi.org/10.3389/fimmu.2021.716296; PMid:34249020 PMCid:PMC8264451

34. Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL et al. (2020). Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Frontiers in Immunology. 11: 567391. https://doi.org/10.3389/fimmu.2020.567391; PMid:33329530 PMCid:PMC7711618

35. Voloshin OM, Marushko YuV, Savchenko II. (2023). А bootstrap analysis of immune status in preschool children suffering from recurrent respiratory infections. Modern Pediatrics. Ukraine. 3(131): 13-21. https://doi.org/10.15574/SP.2023.131.13

36. Zhang X, Dai X, Li X, Xie X, Chen Y, Chen Y et al. (2024). Recurrent respiratory tract infections in children might be associated with vitamin A status: a case-control study. Frontiers in pediatrics. 11: 1165037. https://doi.org/10.3389/fped.2023.1165037; PMid:38250588 PMCid:PMC10796697