- Personalized preservation extraperitoneoscopic radical prostatectomy in high-risk prostate cancer patients
Personalized preservation extraperitoneoscopic radical prostatectomy in high-risk prostate cancer patients
Paediatric Surgery (Ukraine). 2025. 3(88): 87-94. doi: 10.15574/PS.2025.3(88).8794
Nakonechnyi Y. A., Mytsyk Yu. O., Nakonechnyi A. Y., Borzhievskyi A. Ts.
SNPE «Danylo Halytskyi Lviv National Medical University», Ukraine
For citation: Nakonechnyi YA, Mytsyk YuO, Nakonechnyi AY, Borzhievskyi ATs. (2025). Personalized preservation extraperitoneoscopic radical prostatectomy in high-risk prostate cancer patients. Paediatric Surgery (Ukraine). 3(88): 87-94. doi: 10.15574/PS.2025.3(88).8794.
Article received: Apr 26, 2025. Accepted for publication: Sep 16, 2025.
Radical prostatectomy (RP) remains one of the most common treatment approaches for localized prostate cancer (PCa). In recent years, it has been increasingly utilized in cases of high-risk prostate cancer (HR-PCa), where achieving an optimal balance between oncological control and functional outcomes is essential.
Aim – to describe and assess the safety and feasibility of personalized preservation extraperitoneoscopic radical prostatectomy (PP-ERP) in patients with HR-PCa.
Materials and methods. PP-ERP was performed in 21 well-informed HR-PCa patients. All patients underwent meticulous preoperative planning based on multiparametric magnetic resonance imaging with a picture quality score ≥4, utilizing 3D modeling. Imaging was interpreted by an experienced, sub-specialized radiologist. The PRECE nomogram was also utilized for surgical planning and for shared decision-making with the patient regarding the extent of tissue preservation. Urinary continence (UC), erectile function (EF), and biochemical recurrence (BCR) were assessed during the follow-up period.
Results. Using the described approach, extraprostatic extension (EPE) was accurately identified preoperatively in 95.2% of cases. At 12 months postoperatively, UC and EF were preserved in 95.2% and 61.9% of patients, respectively, according to the established criteria. Positive surgical margins were observed in 23.8% of cases, and BCR occurred in 19% at 24 months.
Conclusions. PP-ERP with precise surgical planning appears to be a safe and feasible approach for selected HR-PCa patients, offering encouraging functional and oncological outcomes.
This study was conducted in accordance with the principles of the Declaration of Helsinki. The study protocol was approved by the Local Ethics Committee of the institution. The informed consent was obtained from all patients.
The author declares no conflict of interest.
Keywords: radical prostatectomy, personalized preservation, prostate cancer.
REFERENCES
1. Asimakopoulos AD, Corona Montes VE, Gaston R. (2012). Robot-Assisted Laparoscopic Radical Prostatectomy with Intrafascial Dissection of the Neurovascular Bundles and Preservation of the Pubovesical Complex: A Step-By-Step Description of the Technique. Journal of Endourology. 26: 1578-1585. https://doi.org/10.1089/end.2012.0405; PMid:23072396
2. Becker AS, Giganti F, Purysko AS, Fainberg J, Vargas HA, Woo S. (2023). Taking PI-QUAL beyond the prostate: Towards a standardized radiological image quality score (RI-QUAL). European Journal of Radiology. 165: 110955. https://doi.org/10.1016/j.ejrad.2023.110955; PMid:37421773 PMCid:PMC10404469
3. Bhat KRS, Moschovas MC, Onol FF, Rogers T, Reddy SS, Corder C et al. (2021). Evidence-based evolution of our robot-assisted laparoscopic prostatectomy (RALP) technique through 13,000 cases. J Robotic Surg. 15: 651-660. https://doi.org/10.1007/s11701-020-01157-5; PMid:33040249
4. Covas Moschovas M, Bhat S, Onol FF, Rogers T, Roof S, Mazzone E et al. (2020). Modified Apical Dissection and Lateral Prostatic Fascia Preservation Improves Early Postoperative Functional Recovery in Robotic-assisted Laparoscopic Radical Prostatectomy: Results from a Propensity Score-matched Analysis. European Urology. 78: 875-884. https://doi.org/10.1016/j.eururo.2020.05.041; PMid:32593529
5. De Carvalho PA, Barbosa JABA, Guglielmetti GB, Cordeiro MD, Rocco B, Nahas WC et al. (2020). Retrograde Release of the Neurovascular Bundle with Preservation of Dorsal Venous Complex During Robot-assisted Radical Prostatectomy: Optimizing Functional Outcomes. European Urology. 77: 628-635. https://doi.org/10.1016/j.eururo.2018.07.003; PMid:30041833
6. Falagario UG, Knipper S, Pellegrino F, Martini A, Akre O, Egevad L et al. (2024). Prostate Cancer-specific and All-cause Mortality After Robot-assisted Radical Prostatectomy: 20 Years' Report from the European Association of Urology Robotic Urology Section Scientific Working Group. European Urology Oncology. 7: 705-712. https://doi.org/10.1016/j.euo.2023.08.005; PMid:37661459
7. Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M et al. (2012). Systematic Review and Meta-analysis of Studies Reporting Potency Rates After Robot-assisted Radical Prostatectomy. European Urology. 62: 418-430. https://doi.org/10.1016/j.eururo.2012.05.046; PMid:22749850
8. Furrer MA, Sathianathen N, Gahl B, Wuethrich PY, Giannarini G et al. (2023). Functional Impact of Neuro-Vascular Bundle Preservation in High Risk Prostate Cancer without Compromising Oncological Outcomes: A Propensity-Modelled Analysis. Cancers. 15: 5839. https://doi.org/10.3390/cancers15245839; PMid:38136384 PMCid:PMC10741934
9. Galfano A, Ascione A, Grimaldi S, Petralia G, Strada E, Bocciardi AM. (2010). A New Anatomic Approach for Robot-Assisted Laparoscopic Prostatectomy: A Feasibility Study for Completely Intrafascial Surgery. European Urology. 58: 457-461. https://doi.org/10.1016/j.eururo.2010.06.008; PMid:20566236
10. Giganti F, Allen C, Emberton M, Moore CM, Kasivisvanathan V. (2020). Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. European Urology Oncology. 3: 615-619. https://doi.org/10.1016/j.euo.2020.06.007; PMid:32646850
11. Hamamoto S, AbdelRazek M, Naiki T, Taguchi K, Etani T, Iwatsuki S et al. (2021). LigaSure versus the standard technique (Hem-o-lok clips) for robot-assisted radical prostatectomy: a propensity score-matched study. J Robotic Surg. 15: 869-875. https://doi.org/10.1007/s11701-020-01180-6; PMid:33426579
12. Ippoliti S, Colalillo G, Egbury G, Orecchia L, Fletcher P, Piechaud T et al. (2023). Continence-Sparing Techniques in Radical Prostatectomy: A Systematic Review of Randomized Controlled Trials. Journal of Endourology. 37: 1088-1104. https://doi.org/10.1089/end.2023.0188; PMid:37597197
13. Kessler TM, Burkhard FC, Studer UE. (2007). Nerve-Sparing Open Radical Retropubic Prostatectomy. European Urology. 51: 90-97. https://doi.org/10.1016/j.eururo.2006.10.013; PMid:17074431
14. Kowalczyk KJ, Huang AC, Hevelone ND, Lipsitz SR, Yu H, Ulmer WD et al. (2011). Stepwise Approach for Nerve Sparing Without Countertraction During Robot-Assisted Radical Prostatectomy: Technique and Outcomes. European Urology. 60: 536-547. https://doi.org/10.1016/j.eururo.2011.05.001; PMid:21620561
15. Lin Y, Yilmaz EC, Belue MJ, Turkbey B. (2023). Prostate MRI and image Quality: It is time to take stock. European Journal of Radiology. 161: 110757. https://doi.org/10.1016/j.ejrad.2023.110757; PMid:36870241 PMCid:PMC10493032
16. Mandel A, Choudhary M, Tillu N, Maheshwari A, Kolanukuduru K et al. (2025). Hood Technique for Radical Prostatectomy. Journal of Endourology. 39: S35-S38. https://doi.org/10.1089/end.2024.0303; PMid:40100831
17. Mandel A, Parekh S, Choudhary M, Morizane S, Kacagan C, Tillu N et al. (2025). Analysis of the Current Surgical Anatomical Knowledge of Radical Prostatectomy: An Updated Review. European Urology. 20:S0302-2838(25)00344-6. Epub ahead of print. https://doi.org/10.1016/j.eururo.2025.06.002; PMid:40544124
18. Martini A, Cumarasamy S, Haines KG, Tewari AK. (2019). An updated approach to incremental nerve sparing for robot‐assisted radical prostatectomy. BJU International. 124: 103-108. https://doi.org/10.1111/bju.14655; PMid:30575261
19. Martini A, Falagario UG, Villers A, Dell'Oglio P, Mazzone E, Autorino R et al. (2020). Contemporary Techniques of Prostate Dissection for Robot-assisted Prostatectomy. European Urology. 78: 583-591. https://doi.org/10.1016/j.eururo.2020.07.017; PMid:32747200
20. Martini A, Gandaglia G, Karnes RJ, Zaffuto E, Bianchi M, Gontero P et al. (2019). Defining the Most Informative Intermediate Clinical Endpoints for Predicting Overall Survival in Patients Treated with Radical Prostatectomy for High-risk Prostate Cancer. European Urology Oncology. 2: 456-463. https://doi.org/10.1016/j.euo.2018.12.002; PMid:31277783
21. Mattei A, Naspro R, Annino F, Burke D, Guida R, Gaston R. (2007). Tension and Energy-Free Robotic-Assisted Laparoscopic Radical Prostatectomy with Interfascial Dissection of the Neurovascular Bundles. European Urology. 52: 687-695. https://doi.org/10.1016/j.eururo.2007.05.029; PMid:17587488
22. Menon M, Shrivastava A, Bhandari M, Satyanarayana R, Siva S, Agarwal PK. (2009). Vattikuti Institute Prostatectomy: Technical Modifications in 2009. European Urology. 56: 89-96. https://doi.org/10.1016/j.eururo.2009.04.032; PMid:19403236
23. Moris L, Gandaglia G, Vilaseca A, Van Den Broeck T, Briers E, De Santis M et al. (2022). Evaluation of Oncological Outcomes and Data Quality in Studies Assessing Nerve-sparing Versus Non-Nerve-sparing Radical Prostatectomy in Nonmetastatic Prostate Cancer: A Systematic Review. European Urology Focus. 8: 690-700. https://doi.org/10.1016/j.euf.2021.05.009; PMid:34147405
24. Moschovas MC, Jaber A, Saikali S, Sandri M, Bhat S, Rogers T et al. (2024). Impacts on functional and oncological outcomes of Robotic-assisted Radical Prostatectomy 10 years after the US Preventive Service Taskforce recommendations against PSA screening. Int. braz j urol. 50: 65-79. https://doi.org/10.1590/s1677-5538.ibju.2023.0530; PMid:38166224 PMCid:PMC10947651
25. Moschovas MC, Patel V. (2022). Neurovascular bundle preservation in robotic-assisted radical prostatectomy: How I do it after 15.000 cases. Int. braz j urol. 48: 212-219. https://doi.org/10.1590/s1677-5538.ibju.2022.99.04; PMid:34786925 PMCid:PMC8932039
26. Myers RP. (2002). Detrusor apron, associated vascular plexus, and avascular plane: relevance to radical retropubic prostatectomy – anatomic and surgical commentary. Urology. 59: 472-479. https://doi.org/10.1016/S0090-4295(02)01500-5; PMid:11927293
27. Nakonechnyi YA. (2025). Intracorporeal square-to-slip knot technique for vesicourethral anastomosis with single-layer anatomical reconstruction and anterior urethral sphincter preservation. Paediatric Surgery (Ukraine). 1(86): 73-78. https://doi.org/10.15574/PS.2025.1(86).7378; PMid:41374753
28. Nakonechnyi YA, Mytsyk YuO, Borzhievskyi ATs. (2024). PCA3 score prognostic value for identifying postoperative ISUP grades 4-5 in localized peripheral zone prostate cancer with a posterior tumor growth dominant pattern. Paediatric Surgery (Ukraine). 4(85): 65-70. https://doi.org/10.15574/PS.2024.4(85).6570
29. Oyama S, Nonaka T, Matsumoto K, Taniguchi D, Hashimoto Y, Obata T et al. (2021). A new method using a vessel-sealing system provides coagulation effects to various types of bleeding with less thermal damage. Surg Endosc. 35: 1453-1464. https://doi.org/10.1007/s00464-020-08043-z; PMid:33063194 PMCid:PMC7886768
30. Patel VR, Sandri M, Grasso AAC, De Lorenzis E, Palmisano F, Albo G et al. (2018). A novel tool for predicting extracapsular extension during graded partial nerve sparing in radical prostatectomy. BJU International. 121: 373-382. https://doi.org/10.1111/bju.14026; PMid:28941058
31. Patel VR, Schatloff O, Chauhan S, Sivaraman A, Valero R, Coelho RF et al. (2012). The Role of the Prostatic Vasculature as a Landmark for Nerve Sparing During Robot-Assisted Radical Prostatectomy. European Urology. 61: 571-576. https://doi.org/10.1016/j.eururo.2011.12.047; PMid:22225830
32. Pellegrino F, Falagario UG, Knipper S, Martini A, Akre O, Egevad L et al. (2024). Assessing the Impact of Positive Surgical Margins on Mortality in Patients Who Underwent Robotic Radical Prostatectomy: 20 Years' Report from the EAU Robotic Urology Section Scientific Working Group. European Urology Oncology. 7: 888-896. https://doi.org/10.1016/j.euo.2023.11.021; PMid:38155061
33. Ponsiglione A, Stanzione A, Califano G, De Giorgi M, Collà Ruvolo C, D'Iglio I et al. (2023). MR image quality in local staging of prostate cancer: Role of PI-QUAL in the detection of extraprostatic extension. European Journal of Radiology. 166: 110973. https://doi.org/10.1016/j.ejrad.2023.110973; PMid:37453275
34. Schlomm T, Heinzer H, Steuber T, Salomon G, Engel O, Michl U et al. (2011). Full Functional-Length Urethral Sphincter Preservation During Radical Prostatectomy. European Urology. 60: 320-329. https://doi.org/10.1016/j.eururo.2011.02.040; PMid:21458913
35. Shim JS, Tae JH, Noh TI, Kang SH, Cheon J, Lee JG et al. (2022). Toggling Technique Allows Retrograde Early Release to Facilitate Neurovascular Bundle Sparing During Robot-Assisted Radical Prostatectomy: A Propensity Score-Matching Study. J Korean Med Sci. 37: e6. https://doi.org/10.3346/jkms.2022.37.e6; PMid:34981681 PMCid:PMC8723890
36. Shore N, Hafron J, Saltzstein D, Brown G, Belkoff L, Aggarwal P et al. (2024). Apalutamide for High-Risk Localized Prostate Cancer Following Radical Prostatectomy (Apa-RP). J Urol. 212: 682-691. https://doi.org/10.1097/JU.0000000000004163; PMid:39088398 PMCid:PMC12721603
37. Sood A, Grauer R, Jeong W, Butaney M, Mukkamala A, Borchert A et al. (2022). Evaluating post radical prostatectomy mechanisms of early continence. The Prostate. 82: 1186-1195. https://doi.org/10.1002/pros.24372; PMCid:PMC8887817
38. Spirito L, Sciorio C, Romano L, Di Girolamo A, Ruffo A, Romeo G et al. (2025). Impact of Nerve-Sparing Techniques on Prostate-Specific Antigen Persistence Following Robot-Assisted Radical Prostatectomy: A Multivariable Analysis of Clinical and Pathological Predictors. Diagnostics. 15: 987. https://doi.org/10.3390/diagnostics15080987; PMid:40310337 PMCid:PMC12025793
39. Srivastava A, Grover S, Sooriakumaran P, Tan G, Takenaka A, Tewari AK. (2011). Neuroanatomic basis for traction-free preservation of the neural hammock during athermal robotic radical prostatectomy. Current Opinion in Urology. 21: 49-59. https://doi.org/10.1097/MOU.0b013e32834120e9; PMid:21099688
40. Stolzenburg J, McNeill A, Liatsikos EN. (2008). Nerve‐sparing endoscopic extraperitoneal radical prostatectomy. BJU International. 101: 909-928. https://doi.org/10.1111/j.1464-410X.2008.07544.x; PMid:18321324
41. Takenaka A, Leung RA, Fujisawa M, Tewari AK. (2006). Anatomy of autonomic nerve component in the male pelvis: the new concept from a perspective for robotic nerve sparing radical prostatectomy. World J Urol. 24: 136-143. https://doi.org/10.1007/s00345-006-0102-2; PMid:16758247
42. Tewari AK, Srivastava A, Huang MW, Robinson BD, Shevchuk MM, Durand M et al. (2011). Anatomical grades of nerve sparing: a risk‐stratified approach to neural‐hammock sparing during robot‐assisted radical prostatectomy (RARP). BJU International. 108: 984-992. https://doi.org/10.1111/j.1464-410X.2011.10565.x; PMid:21917101
43. Wagaskar VG, Mittal A, Sobotka S, Ratnani P, Lantz A, Falagario UG et al. (2021). Hood Technique for Robotic Radical Prostatectomy – Preserving Periurethral Anatomical Structures in the Space of Retzius and Sparing the Pouch of Douglas, Enabling Early Return of Continence Without Compromising Surgical Margin Rates. European Urology. 80: 213-221. https://doi.org/10.1016/j.eururo.2020.09.044; PMid:33067016
44. Wibmer A, Vargas HA, Donahue TF, Zheng J, Moskowitz C, Eastham J et al. (2015). Diagnosis of Extracapsular Extension of Prostate Cancer on Prostate MRI: Impact of Second-Opinion Readings by Subspecialized Genitourinary Oncologic Radiologists. American Journal of Roentgenology. 205: W73-W78. https://doi.org/10.2214/AJR.14.13600; PMid:26102421
45. Yu Y, Reiter RE, Zhang M. (2025). Surgical techniques for enhancing postoperative urinary continence in robot-assisted radical prostatectomy: a comprehensive review. International Journal of Surgery. 111: 3931-3941. https://doi.org/10.1097/JS9.0000000000002414; PMid:40358638 PMCid:PMC12165507
