- The impact of providing nutrients in antenatal period and infancy on the development of obesity in children
 
The impact of providing nutrients in antenatal period and infancy on the development of obesity in children
SOVREMENNAYA PEDIATRIYA.2016.7(79):106-111; doi 10.15574/SP.2016.79.106
The impact of providing nutrients in antenatal period and infancy on the development of obesity in children
Pohylko V. I., Tsvirenko S. M., Solovyova H. O., Cherniavska Y. I.
Ukrainian medical stomatological academy, Poltava, Ukraine
	
	This article analyzes the data of the literature about the effect of nutritional support in the prenatal period and infancy on the development of obesity in children. We know that almost 60% of adults who are obese, have overweight problems that began in childhood and adolescence. Obesity and its complications (diabetes type 2, hypertension, coronary heart disease, atherosclerosis, cancer) are associated with numerous genetic markers, but some hormonal, syndromic or molecular genetic disorders can explain less than 5% of all cases of obesity. We have shown the role of low and high protein content in the diet of fetus and child in the first year of life in the development of obesity in children. It was analyzed the concept and predictable mechanisms of food (nutritional) software for obesity. Breastfeeding reduces the risk of excessive weight gain in adulthood, while the artificial feeding promotes obesity. Attention is focused on maintaining breastfeeding until 6 months of age to ensure optimal growth and development.
	
	Key words: obesity in children antenatal period, nutritional status, nutritional programming.
	
	REFERENCES
1. Belmer SV. 2015. Food programming concept: general provisions and specific examples. Attending physician. 2. www.lvrach.ru/2015/02/15436169/
2. Bokova TA. 2013. Metabolic syndrome in children: solved and unsolved issues of etiopathogenesis (Literature Review). Experimental and clinical gastroenterology. 1: 68–73.
3. Bolotova NV, Lazebnikova SV, AP Averyanov. 2007. Peculiarities of metabolic syndrome in children and adolescents. Pediatrics. 86 (3): 35–39.
4. Bolotova NV. 2014 Vascular condition in children and adolescents with metabolic syndrome. Problems of Endocrinology. 60 (2): 8–12.
5. Butrova SA, Dedov II, Melnichenko GA. 2004. Treatment of obesity. Obesity: etiology, pathogenesis, clinical aspects: 378–405.
6. Gromnatskaya NN, Gromnatsky NI. 2014. Breastfeeding as a method of prevention of the metabolic syndrome in children. Cardiovascular therapy and prevention. 13 (2): 31–32.
7. Zelіnska NB. 2013. Obesity and metabolic syndrome in children. Clinical endocrinology and endocrine surgery. 4: 62–72.
8. Leontieva IV. 2011. Diagnosis and treatment of the metabolic syndrome in pediatric practice Doctor. Ru. 2 (61): 13–23.
9. Netrebenko DC. 2015. Postnatal programming: a protein in the diet of infants. Pediatrics. 94 (1): 112–120.
10. Serov VN, Prilepskaya VN, Ovsyannikova TV. 2006. Gynecological Endocrinology. MEDpress-Inform: 283–321.
11. Armitage JA, Poston L, Taylor PD. 2008. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res. 36: 73—84.
12. Bartok CJ. Ventura AK. 2009. Mechanisms underlying the association between breastfeeding and obesity. Int J Pediatr Obes. 4: 196—204.
13. Valsamakis G, Kanaka-Gantenbein C, MalamitsiPuchner A et al. 2006. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci. 1092: 138—147. https://doi.org/10.1196/annals.1365.012; PMid:17308140
14. Сlinical Guidelines on the Identification, Evaluation and Treatment of Overweight and Obesity in Adults — The Evidence Report. National Institutes of Health. Obes Res. 1998. 6(2): 51—209.
15. Desai M, Beall M, Ross MG. 2013. Developmental Origins of Obesity: Programmed Adipogenesis. Curr Diab Rep. 13(1): 27—33. https://doi.org/10.1007/s11892-012-0344-x; PMid:23188593 PMCid:PMC3563293
16. Owen CG, Whincup PH, Kaye SJ et al. 2008. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am J Clin Nutr. 88: 305—314. PMid:18689365
17. Snoeck A, Remacle C, Reusens B et al. 1990. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 57: 107—118. https://doi.org/10.1159/000243170; PMid:2178691
18. Agostoni C, Decsi T, Fewtrell M et al. 2008. ESPGHAN Committee on Nutrition: Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 46: 99—110. https://doi.org/10.1097/01.mpg.0000304464.60788.bd; PMid:18162844
19. Barker DJ, Bull AR, Osmond C et al. 1990. Fetal and placental size and risk of hypertension in adult life. BMJ. 301: 259—262. https://doi.org/10.1136/bmj.301.6746.259; https://doi.org/10.1136/bmj.301.6751.551-b; PMid:2390618 PMCid:PMC1663477
20. Hales CN, Barker DJ. 2001. The thrifty phenotype hypothesis. Br Med Bull. 60: 5—20. https://doi.org/10.1093/bmb/60.1.5; PMid:11809615
21. Agostoni C, Scaglioni S, Ghisleni D et al. 2005. How much protein is safe? Int J Obes. 29: 8-13. https://doi.org/10.1038/sj.ijo.0803095
22. Chiavaroli V, Giannini C, D'Adamo E et al. 2009. Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics. 124(2): 695—702. https://doi.org/10.1542/peds.2008-3056; PMid:19651586
23. Kerkhof GF, Ralph Leunissen WJ, Hokken-Koelega AC. 2012. Early origins of the metabolic syndrome: role of small size at birth, early postnatal weight gain, and adult IGF-1. JCEM. 97: 2637—2643. https://doi.org/10.1210/jc.2012-1426
24. Khan IY, Dekou V, Douglas G. 2005. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol. 288: 127—133.
25. Lamkjaer A, Mlgaard C, Mickaelsen K. 2012. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr Opin Nutr Metabol Care. 15: 285—292. https://doi.org/10.1097/MCO.0b013e328351c472; PMid:22466924
26. Langley-Evans SC. 2009. Nutritional programming of disease: unravelling the mechanism. J Anat. 215: 36—51. https://doi.org/10.1111/j.1469-7580.2008.00977.x; PMid:19175805 PMCid:PMC2714637
27. Livingstone B. 2000. Epidemiology of childhood obesity in Europe. Eur J Pediatr. 159; Suppl 1: 14—34. https://doi.org/10.1007/PL00014363
28. McDonald SD. 2007. Management and prevention of obesity in adults and children. CMAJ. 176(8): 1109—1110. https://doi.org/10.1503/cmaj.070021; PMid:17420494 PMCid:PMC1839790
29. Meas T. 2010. Fetal origins of insulin resistance and the metabolic syndrome: A key role for adipose tissue? Diabetes Metab. 36: 11—20. https://doi.org/10.1016/j.diabet.2009.09.001; PMid:19815442
30. O'Rahilly S, Farooqi IS, Yeo GS et al. 2003. Minireview: human obesity-lessons from monogenic disorders. Endocrinology. 144: 3757—3764. https://doi.org/10.1210/en.2003-0373; PMid:12933645
31. Norman M. 2008. Low birth weight and the developing vascular tree: a systematic review. Acta Paediatr. 97: 1165—1172. https://doi.org/10.1111/j.1651-2227.2008.00904.x; PMid:18554273
32. Ong KK. 2006. Size at birth, postnatal growth and risk of obesity. Horm Res. 65; Suppl 3: 65-69. https://doi.org/10.1159/000091508
33. Palmer AC. 2011.Nutritionally Mediated Programming of the Developing Immune System. Adv Nutr. 2: 377—395. https://doi.org/10.3945/an.111.000570; PMid:22332080 PMCid:PMC3183589
34. Pettitt DJ, Jovanovic L. 2007. Low birth weight as a risk factor for gestational diabetes, diabetes, and impaired glucose tolerance during pregnancy. Diabetes Care. 30; Suppl 2: 147—149. https://doi.org/10.2337/dc07-s207; PMid:17596463
35. Guo SS, Wu W, Chumlea WC et al. 2002. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 763: 653—658.
36. Daenzer M, Ortmann S, Klaus S et al. 2002. Prenatal high protein exposure decreases energy expenditure and increases adiposity in young rats. J Nutr. 132: 142—144. PMid:11823569
37. Desai M, Guang H, Ferelli M et al. 2008. Programmed upregulation of adipogenic transcription factors in intrauterine growth-restricted off spring. Reprod Sci. 158: 785—796. https://doi.org/10.1177/1933719108318597; PMid:19017816 PMCid:PMC3444244
38. Des Roberts C, Li N, Zhang L et al. 2005. Protein intake affects glucose metabolism prior to weaning in rat pups. ESPR. Abstract collection: 148.
39. Robinson S, Fall C. 2012. Infant Nutrition and Later Health: A Review of Current Evidence. Nutrients. 4: 859—874. https://doi.org/10.3390/nu4080859; PMid:23016121 PMCid:PMC3448076
40. Roith DL. 2003. The Insulin-like growth factor system. Exp Diabesity Re. 4: 205—212. https://doi.org/10.1155/EDR.2003.205; PMid:14668044 PMCid:PMC2478611
41. Vickers MH, Breier BH, McCarthy D et al. 2003. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol. 285: 271—273. https://doi.org/10.1152/ajpregu.00051.2003
42. Pausova Z, Mahboudi A, Abrahamowicz M et al. 2012. Sex differences in the contributions of visceral and total bodi fat to blood pressure in adolescence. Hypertension. 59: 572—579. https://doi.org/10.1161/HYPERTENSIONAHA.111.180372; PMid:22291448
43. Pereira JA, Rondo PC, Lemos JO et al. 2010. The influence of birthweight on arterial blood pressure of children. Clin Nutr. 29: 337—340. https://doi.org/10.1016/j.clnu.2010.01.005; PMid:20116146
      
 
 
 
 
 
 