• Significance of molecular and genetic research in hypochromic microcytic anemia refractory to ferrotherapy in the diagnosis of erythropoietic protoporphyria
en To content Full text of article

Significance of molecular and genetic research in hypochromic microcytic anemia refractory to ferrotherapy in the diagnosis of erythropoietic protoporphyria

Modern Pediatrics. Ukraine. (2022). 7(127): 102-110. doi 10.15574/SP.2022.127.102
O.I. Dorosh1,2, Kh.I. Bodak1, H.W. Makukh3, I.P. Tsymbalyuk-Voloshyn1, A.M. Mykh1, L.P. Seredych1
1СNE of LRC «Western Ukrainian Specialized Pediatric Medical Centre», Lviv, Ukraine
2Danylo Halytsky Lviv National Medical University, Ukraine
3Institute of Hereditary Pathology of the NAMS of Ukraine, Lviv

For citation: Dorosh OI, Bodak KhI, Makukh HW, Tsymbalyuk-Voloshyn IP, Mykh AM, Seredych LP. (2022). Significance of molecular and genetic research in hypochromic microcytic anemia refractory to ferrotherapy in the diagnosis of erythropoietic protoporphyria. Modern Pediatrics. Ukraine. 7(127): 102-110. doi 10.15574/SP.2022.127.102.
Article received: Sep 03, 2022. Accepted for publication: Nov 15, 2022.

Erythropoietic protoporphyria (EPP) is a rare hereditary disease that occurs worldwide, but there are regional differences in its epidemiology. The disease is caused by a partial deficiency of ferrochelatase, which is the last enzyme in the pathway of heme biosynthesis. In typical EPP, photosensitivity appears after first exposure to the sun in early childhood. Microcytic anemia is observed in 20-60% of registered EPP patients, which is mistakenly initially diagnosed as iron-deficiency anemia and prescribed iron-containing drugs.
Purpose – is to present a clinical case of iron refractory hypochromic microcytic anemia in a four-month-old boy to improve the diagnosis of EPP.
Clinical case. In the publication, we report on a 4-month-old boy in whom the disease debuted with hypochromic microcytic anemia refractory to the administration of iron preparations, target-like erythrocytes, normal indicators of iron metabolism, a slight enlargement of the spleen were found in the peripheral blood smear. The emphasis in the publication is on differential diagnosis, preventive measures and modern pathogenetic treatment with the latest approaches, which are aimed at solving the main defects at the molecular or cellular level, with the prospect of significantly improving the results of this orphan disease. Verification of the disease took place with the help of genome sequencing, a heterozygous pathogenic mutation FECH c.315-48T>C, characteristic of EPP which the child received from the father, was found.
The experience of iron-refractory hypochromic microcytic anemia in a four-month-old boy gave grounds to expand the range of examinations, including hemoglobin electrophoresis and the use of molecular genetic studies, for differential diagnostic purposes. The report of this clinical case will be of informational value for family doctors, pediatricians, hematologists and a wide range of specialists.
The research was carried out in accordance with the principles of the Helsinki Declaration. The informed consent of the patient was obtained for conducting the studies.
No conflict of interests was declared by the authors.
Keywords: erythropoietic protoporphyria, microcytic hypochromic anemia, genetic disease, children.
REFERENCES
1. Anstey AV. (2022). Systemic photoprotection with alpha-tocopherol (vitamin E) and beta-carotene. Clin Exp Dermatol. 27: 170-176. https://doi.org/10.1046/j.1365-2230.2002.01040.x; PMid:12072001

2. Balwani M, Bonkovsky HL, Belongie KJ, Anderson KE, Takahashi F et al. (2020). Erythropoietic Protoporphyria: Phase 2 Clinical Trial Results Evaluating the Safety and Effectiveness of Dersimelagon (MT-7117), an Oral MC1R Agonist. Blood. 136 (1): 51. https://doi.org/10.1182/blood-2020-142467

3. Balwani M. (2019). Erythropoietic Protoporphyria and X-Linked Protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab. 128 (3): 298-303. https://doi.org/10.1016/j.ymgme.2019.01.020; PMid:30704898 PMCid:PMC6656624

4. Bentley DP, Meek EM. (2013). Clinical and biochemical improvement following low-dose intravenous iron therapy in a patient with erythropoietic protoporphyria. Br J Haematol. 163: 289-291. https://doi.org/10.1111/bjh.12485; PMid:23895304 PMCid:PMC4153882

5. Biolcati G, Marchesini E, Sorge F, Barbieri L, Schneider-Yin X, Minder EI. (2015). Long-term observational study of afamelanotide in 115 patients with erythropoietic protoporphyria. Br J Dermatol. 172: 1601-1612. https://doi.org/10.1111/bjd.13598; PMid:25494545

6. Bissell DM, Anderson KE, Bonkovsky HL. (2017). Porphyria. N Engl J Med. 377 (9): 862-872. https://doi.org/10.1056/NEJMra1608634; PMid:28854095

7. Brancaleoni V, Granata F, Missineo P, Fustinoni S, Graziadei G, Di Pierro E. (2018). Digital PCR (dPCR) analysis reveals that the homozygous c.315-48T>C variant in the FECH gene might cause erythropoietic protoporphyria (EPP). Mol Genet Metab. 124 (4): 287-296. Epub 2018 Jun 13. https://doi.org/10.1016/j.ymgme.2018.06.005; PMid:29941360

8. Dickey AK, Quick C, Ducamp S, Zhu Z, Feng YA, Naik H et al. (2021). Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria. Genet Med. 23 (1): 140-148. https://doi.org/10.1038/s41436-020-00951-8; PMid:32873934 PMCid:PMC7796935

9. Erwin AL, Balwani М. (2021). Porphyrias in the Age of Targeted Therapies. Diagnostics (Basel). 11 (10): 1795. https://doi.org/10.3390/diagnostics11101795; PMid:34679493 PMCid:PMC8534485

10. Farrag MS, Kučerová J, Šlachtová L, Šeda O, Šperl J, Martásek P. (2015). A Novel Mutation in the FECH Gene in a Czech Family with Erythropoietic Protoporphyria and a Population Study of IVS3-48C Variant Contributing to the Disease. Folia Biol (Praha). 61 (6): 227-232.

11. Graziadei G, Duca L, Granata F, De Luca G, De Giovanni A, Brancaleoni V, Nava I, Di Pierro E. (2022). Microcytosis in Erythropoietic Protoporphyria. Front Physiol. 13: 841050. eCollection 2022. https://doi.org/10.3389/fphys.2022.841050; PMid:35309058 PMCid:PMC8928159

12. Heerfordt IM, Lerche CM, Wulf HC. (2022). Cimetidine for erythropoietic protoporphyria. Photodiagnosis Photodyn Ther. 38: 102793. https://doi.org/10.1016/j.pdpdt.2022.102793; PMid:35245673

13. Holme SA, Anstey AV, Finlay AY, Elder GH, Badminton MN. (2006). Erythropoietic protoporphyria in the U.K.: clinical features and effect on quality of life. Br J Dermatol. 155: 574-581. https://doi.org/10.1111/j.1365-2133.2006.07472.x; PMid:16911284

14. Holme SA, Whatley SD, Roberts AG, Anstey AV, Elder GH, Ead RD, Stewart MF et al. (2009). Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Invest Dermatol. 129: 599-605. https://doi.org/10.1038/jid.2008.272; PMid:18787536

15. Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN. (2007). Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood. 110: 4108-4110. https://doi.org/10.1182/blood-2007-04-088120; PMid:17804693

16. Kieke MC, Klemm J, Tondin AR, Alencar V, Johnson N, Driver AM, Lentz T, Fischer GJ, Caporale DA, Drury LJ. (2019). Characterization of a novel pathogenic variant in the FECH gene associated with erythropoietic protoporphyria. Mol Genet Metab Rep. 20: 100481. https://doi.org/10.1016/j.ymgmr.2019.100481; PMid:31304091 PMCid:PMC6599883

17. Lala SM, Naik H, Balwani M. (2018). Diagnostic Delay in Erythropoietic Protoporphyria. J Pediatr. 202: 320-323.e2. https://doi.org/10.1016/j.jpeds.2018.06.001; PMid:30041937 PMCid:PMC6203604

18. Landefeld C, Kentouche K, Gruhn B, Stauch T, Rossler S, Schuppan D, Whatley SD, Beck JF, Stolzel U. (2016). X-linked protoporphyria: Iron supplementation improves protoporphyrin overload, liver damage and anaemia. Br J Haematol. 173: 482-484. https://doi.org/10.1111/bjh.13612; PMid:26193873

19. Landis-Piwowar K, Landis J, Keila P. (2015). The complete blood count and peripheral blood smear evaluation. In Clinical laboratory hematology. 3rd ed. New Jersey: Pearson: 154-177.

20. Langendonk JG, Balwani M, Anderson KE, Bonkovsky HL, Anstey AV et al. (2015). Afamelanotide for Erythropoietic Protoporphyria. N Engl J Med. 373 (1): 48-59. ULR: https://www.nejm.org/doi/full/10.1056/nejmoa1411481. https://doi.org/10.1056/NEJMoa1411481; PMid:26132941 PMCid:PMC4780255

21. Lecha M, Puy H, Deybach JC. (2009). Erythropoietic protoporphyria. Orphanet J Rare Dis. 4: 19. https://doi.org/10.1186/1750-1172-4-19; PMid:19744342 PMCid:PMC2747912

22. Li C, Di Pierro E, Brancaleoni V, Cappellini MD, Steensma DP. (2009). A novel large deletion and three polymorphisms in the FECH gene associated with erythropoietic protoporphyria. Clin Chem Lab Med. 47 (1): 44-46. https://doi.org/10.1515/CCLM.2009.010

23. Liu ZH, Shen H. (2022). Erythropoietic Protoporphyria. J Cutan Med Surg. 26 (3): 314. https://doi.org/10.1177/12034754211016295; PMid:33945342

24. Minder EI, Schneider-Yin X, Steurer J, Bachmann LM. (2009). A systematic review of treatment options for dermal photosensitivity in erythropoietic protoporphyria. Cell Mol Biol. 55: 84-97.

25. Minder EI. (2010). Afamelanotide, an agonistic analog of alpha-melanocyte-stimulating hormone, in dermal phototoxicity of erythropoietic protoporphyria. Expert Opin Investig Drugs. 19: 1591-1602. https://doi.org/10.1517/13543784.2010.535515; PMid:21073357

26. Mizawa M, Makino T, Nakano H, Sawamura D, Shimizu T. (2019). Erythropoietic Protoporphyria in a Japanese Population. Acta Derm Venereol. 99 (7): 634-639. https://doi.org/10.2340/00015555-3184; PMid:30938825

27. Oustric V, Manceau H, Ducamp S, Soaid R, Karim Z, Schmitt C et al. (2014). Antisense oligonucleotide-based therapy in human erythropoietic protoporphyria. Am J Hum Genet. 94 (4): 611-617. https://doi.org/10.1016/j.ajhg.2014.02.010; PMid:24680888 PMCid:PMC3980518

28. Rand EB, Bunin N, Cochran W, Ruchelli E, Olthoff KM, Bloomer JR. (2006). Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics. 118: e1896-e1899. https://doi.org/10.1542/peds.2006-0833; PMid:17074841

29. Rodak BF, Carr JH. (2017). Variations in shape and distribution of erythrocytes. In Clinical hematology atlas. 5th ed. St. Louis, Missouri: Elsevier Inc: 93-106.

30. Sarda R, Soneja M. (2020). Erythropoietic protoporphyria: Delayed presentation with decompensated liver disease. Indian J Med Res. 152 (1): S6-S7. https://doi.org/10.4103/ijmr.IJMR_2254_19; PMid:35345089 PMCid:PMC8257190

31. Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. (2014). Liver transplantation in the management of porphyria. Hepatology. 60: 1082-1089. https://doi.org/10.1002/hep.27086; PMid:24700519 PMCid:PMC4498564

32. Snast I, Kaftory R, Sherman S, Edel Y, Hodak E, Levi A, Lapidoth M. (2020). Acquired erythropoietic protoporphyria: A systematic review of the literature. Photodermatol Photoimmunol Photomed. 36 (1): 29-33. https://doi.org/10.1111/phpp.12501; PMid:31374130

33. Thunell S, Harper P, Brun A. (2000). Porphyrins, porphyrin metabolism and porphyrias. IV. Pathophysiology of erythyropoietic protoporphyria – diagnosis, care and monitoring of the patient. Scand J Clin Lab Invest. 60: 581-604. https://doi.org/10.1080/003655100448310; PMid:11202048

34. Wahlin S, Harper P. (2010). The role for BMT in erythropoietic protoporphyria. Bone Marrow Transplant. 45: 393-394. https://doi.org/10.1038/bmt.2009.132; PMid:19525986

35. Wensink D, Wagenmakers MAEM, Langendonk JG. (2021). Afamelanotide for prevention of phototoxicity in erythropoietic protoporphyria. Expert Rev Clin Pharmacol. 14 (2): 151-160. https://doi.org/10.1080/17512433.2021.1879638; PMid:33507118

36. Whitman JC, Paw BH, Chung J. (2018). The role of ClpX in erythropoietic protoporphyria. Hematol Transfus Cell Ther. 40 (2): 182-188. https://doi.org/10.1016/j.htct.2018.03.001; PMid:30057992 PMCid:PMC6001922

37. Yasuda M, Chen B, Desnick DJ. (2019). Recent Advances on Porphyria Genetics: Inheritance, Penetrance & Molecular Heterogeneity, Including New Modifying/Causative Genes. Mol Genet Metab. 128 (3): 320-331. https://doi.org/10.1016/j.ymgme.2018.11.012; PMid:30594473 PMCid:PMC6542720