- Polymorphism of the ADRB2 gene as a factor of hereditary susceptibility to the development of asthma and response to salbutamol therapy
Polymorphism of the ADRB2 gene as a factor of hereditary susceptibility to the development of asthma and response to salbutamol therapy
PERINATOLOGIYA AND PEDIATRIYA.2019.2(78):38-45; doi 10.15574/PP.2019.78.38
Livshits L. A., Tatarsky P. F., Gorodna O. V., Mayakovskaya A. V., Volynets G. P., Chumachenko N. G., Umanets T. R., Lapshin V. F., Antipkin Yu. G.
Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv
SI «Institute of Pediatrics, Obstetrics and Gynecology named after acad. O.M. Lukyanova NAMS of Ukraine», Kyiv
Purpose — to investigate the association of the C79G polymorphism of the ADRB2 gene with the risk of developing Bronchial asthma (BA) in children living under different environmental conditions and to generate in silico 3D structures of β2-adrenoreceptor isoformsencoded by polymorphic variants of the ADRB2 gene (A46G, C79G, and C491T) in order to predict conformational changes which can impact the interaction with salbutamol.
Patients and methods. 114 children aged 3 to 18 years with BA of moderate to severe, controlled course, were randomized into two groups: group I (children from conditionally pure region of Kyiv and Kyiv region) and group II (children from ecologically polluted region). The control group climbed 86 unrelated healthy adults from different regions of Ukraine. The polymorphic variant of the ADRB2 gene (C79G) was investigated by the allelic-specific polymerase chain reaction. The computermodeling of the 3D β2-adrenergic protein structure homology was performed using SWISS-MODEL and I-TASSER web servers, molecular docking was performed using the AutoDock Vina program.
Results. It was found that the frequency of the polymorphic variant 79G of the ADRB2 genecarriersis statistically significantly higher (p<0.05) in the group II (69.4%) compared with the control group (55.8%). According to the analysis of the spatial structure of the ADRB2 protein, it was determined that p.16Arg> Gly and p.27Gln>Glu substitutions localized on the N-terminal sequence, and can affect interaction with protein partners, in turn the amino acid substitution p.164Thr> Ile is localized near the ligand binding site and may reduce the affinity of salbutamol for the corresponding mutant receptor.
Conclusions. The polymorphic variant of 79G of the ADRB2 gene can be considered as a factor of the hereditary susceptibility of BA developmentin conditions of environmentalanthropogenic loading. The 491C>T ADRB2 gene mononucleotide substitution can be considered as a pharmacogenetic marker of a poor patient response to treatment with salbutamol.
Key words: asthma, children, polymorphism of β2-adrenoreceptor gene, salbutamol.
REFERENCES
1. Antypkin YuG, Chumachenko NG, Umanets TR, Lapshyn VF. (2016). Analysis of morbidity and prevalence of bronchial asthma among children from different age groups and regions in Ukraine. Perinatologiya i pediatriya. 1 (65): 95—99. doi 10.15574/PP.2016.65.95
2. Polonnikov AV, Ivanov VP, Bogomazov AD. (2015). Genetiko-biohimicheskie mehanizmyi vovlechennosti fermentov antioksidantnoy sistemyi v razvitie bronhialnoy astmyi. Biomeditsinskaya himiya. 61, 4: 427—439.
3. Tatarskyi PF, Chumachenko NH, Kucherenko AM, Hulkovskyi RV, Arabska LP, Smirnova OA, Tolkach SI, Antypkin YuH, Livshyts LA. (2011). Doslidzhennia mozhlyvoi roli polimorfizmu heniv CYP1A1, GSTT1, GSTM1, GSTP1, NAT2 i ADRB2 u rozvytku bronkhialnoi astmy u ditei. Biopolymers and Cell. 27, 1: 66—73.
4. Bandaru S, Tarigopula P, Akka J et al. (2016). Association of Beta 2 adrenergic receptor (Thr164Ile) polymorphisms with Sulbutamol refractoriness in severe asthmatics from Indian population. Gene. 592 (1): 15—22. https://doi.org/10.1016/j.gene.2016.07.043; PMid:27450915
5. Baranov VS, Baranova EV, Ivaschenko TE, Aseev MV. (2002). Human genome and «predisposition» genes. Introduction into predictive medicine. St. Petersburg: Intermedika: 272.
6. Barnes PJ, Dollery C, MacDermot J. (1980). Increased pulmonary β-adrenergic and dicreased β-adrenergic receptors in experimental asthma. Nature. 285: 569—571. https://doi.org/10.1038/285569a0; PMid:6250039
7. Benkert P, Biasini M, Schwede T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343—350. https://doi.org/10.1093/bioinformatics/btq662; PMid:21134891 PMCid:PMC3031035
8. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports: 7. https://doi.org/10.1038/s41598-017-09654-8; PMid:28874689 PMCid:PMC5585393
9. Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T. (2017). The SWISS-MODEL Repository — new features and functionality. Nucleic. Acids. Res. 45: D313—D319. https://doi.org/10.1093/nar/gkw1132; PMid:27899672 PMCid:PMC5210589
10. Birbian N, Singh J, Jindal SK, Singla N. (2012). Association of β2-adrenergic receptor polymorphisms with asthma in a North Indian population. Lung. 190 (5): 497—504. https://doi.org/10.1007/s00408-012-9407-7; PMid:22821646
11. Ober C, Yao TC. (2011). The Genetics of Asthma and Allergic Disease: A 21st Century Perspective. Immunol Rev. 242 (1): 10—30. URL: https://www.ncbi.nlm.nih.gov/pubmed/21682736. https://doi.org/10.1111/j.1600-065X.2011.01029.x; PMid:21682736 PMCid:PMC3151648
12. Chung LP, Waterer G, Thompson PJ. (2011). Pharmacogenetics of β2 adrenergic receptor gene polymorphisms, long-acting β-agonists and asthma. Clin. Exp. Allergy. 41 (3): 312—326. https://doi.org/10.1111/j.1365-2222.2011.03696.x; PMid:21294785
13. Danielewicz H. (2014). What the Genetic Background of Individuals with Asthma and Obesity Can Reveal: Is β2-Adrenergic Receptor Gene Polymorphism Important? Pediatric allergy, Immunology, and Pulmonology. 27; 3: 23–24. https://doi.org/10.1089/ped.2014.0360; PMid:25276484 PMCid:PMC4170984
14. Drysdale CM, McGraw DW, Stack CB et al. (2000). Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad. Sci USA. 97: 83—88. https://doi.org/10.1073/pnas.97.19.10483; PMid:10984540 PMCid:PMC27050
15. Finkelstein Y, Bournissen FG, Hutson JR, Shannon M. (2009). Polymorphism of the ADRB2 gene and response to inhaled β-agonists in children with asthma: A metaanalysis. J Asthma. 46 (9): 900—905. https://doi.org/10.3109/02770900903199961; PMid:19905915
16. Guex N, Peitsch MC, Schwede T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 30: S162—S173. https://doi.org/10.1002/elps.200900140; PMid:19517507
17. Jovicic N, Babic T, Dragicevic S, Nestorovic B, Nikolic A. (2018). ADRB2 Gene Polymorphisms and salbutamol and responsiveness in serbian children with asthma. BJMG. 21 (1): 33—38. https://doi.org/10.2478/bjmg-2018-0007; PMid:30425908 PMCid:PMC6231319.
18. Jovicic N, Babic T, Dragicevic S, Nestorovic B, Nikolic A. (2018). ADRB2 gene polymorphisms and salbutamol responsiveness in Serbian children with asthma. BJMG. 21 (1): 33—38. https://doi.org/10.2478/bjmg-2018-0007; PMid:30425908 PMCid:PMC6231319.
19. Karam RA, Sabbah NA, Zidan HE, Rahman HM. (2013). Association between genetic polymorphisms of β2-adrenergic receptors and nocturnal asthma in Egyptian children. J. Investig Allergol. Clin. Immunol. 23 (4): 262—266.
20. Liggett SB. (1997). Polymorphisms of the β2-adrenergic receptor and asthma. Am. J. Respir. Crit. Care Med. 156: 156—162. https://doi.org/10.1164/ajrccm.156.4.12tac-15; PMid:9351598
21. Liggett SB. (2000). Beta2-adrenergic receptor pharmacogenetics. Am. J. Respir. Crit. Care Med. 161: 197—201. https://doi.org/10.1164/ajrccm.161.supplement_2.a1q4-10; PMid:10712374
22. Littlejohn MD, Taylor DR, Miller AL, Kennedy MA. (2002). Determination of beta2-adrenergic receptor (ADRB2) haplotypes by a multiplexed polymerase chain reaction assay. Hum. Mutat. 20 (6): 479. https://doi.org/10.1002/humu.9091; PMid:12442282
23. Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, Kobilka BK. (2017). Mechanism of intracellular allosteric beta 2AR antagonist revealed by X-ray crystal structure. Nature. 548: 480—484. https://doi.org/10.1038/nature23652; PMid:28813418 PMCid:PMC5818265
24. Man Tian, Hui Liang, Qiao-Zhi Qin, Wen-xin Zhang and Shan-shan Zhang (2016). ADRB2 polymorphisms in allergic asthma in Han Chinese children. Int. Forum of Allergy & Rhinology. 6 (4): 367—372. https://doi.org/10.1002/alr.21673; PMid:26633084.
25. Maniatis T, Fritsch EF, Sambrook J. (1982). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. Publ: 545.
26. Nabhan JF, Pan H, Lu Q. (2010). Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor. EMBO Rep. 11: 605—611. https://doi.org/10.1038/embor.2010.80; PMid:20559325 PMCid:PMC2920442
27. Petrovic-Stanojevic N, Topic A, Nikolic A, Stan-Kovic M, Dopudja-Pantic V, Milenkovic B et al. (2014). Polymorphisms of β2-adrenergic receptor gene in Serbian asthmatic adults: Effects on response to β-agonists. Mol Diagn Ther. 18 (6): 639—646. https://doi.org/10.1007/s40291-014-0116-1; PMid:25074500
28. Qi S, O'Hayre M, Gutkind JS, Hurley JH. (2014). Insights into beta2-adrenergic receptor binding from structures of the N-terminal lobe of ARRDC3. Protein Sci. 23: 1708—1716. https://doi.org/10.1002/pro.2549; PMid:25220262 PMCid:PMC4253811
29. Rasmussen SGF, Choi HJ, Rosenbaum DM et al. (2007). Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature. 450: 383—387. https://doi.org/10.1038/nature06325; PMid:17952055
30. Reihsaus E, Innis M, MacIntyre N et al. (1993). Mutations in gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell. Mol. Biol. 8: 334—339. https://doi.org/10.1165/ajrcmb/8.3.334; PMid:8383511
31. Roy A, Kucukural A, Zhang Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols. 5: 725—738. https://doi.org/10.1038/nprot.2010.5; PMid:20360767 PMCid:PMC2849174
32. Sauvageau E, Rochdi MD, Oueslati M, Hamdan FF, Percherancier Y, Simpson JC, Pepperkok R, Bouvier M. (2014). CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. Traffic. 15: 383—400. https://doi.org/10.1111/tra.12148; PMid:24405750
33. Statistical publication Environment of Ukraine. (2009). SSC of Ukraine. Kyiv: 270.
34. Sullivan KM, Dean A, Soe MM. (2009). OpenEpi: a web-based epidemiologic and statistical calculator for public health. Public Health Rep. 124; 3: 471—474. https://doi.org/10.1177/003335490912400320; PMid:19445426 PMCid:PMC2663701
35. Thakkinstian A, McEvoy M, Minelli C. et al. (2005). Systematic review and meta-analysis of the association between beta2-adrenoceptor polymorphisms and asthma: a HuGE review. Am. J. Epidemiol. 162: 201—211. https://doi.org/10.1093/aje/kwi184; PMid:15987731
36. Trott O, Olson AJ. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry. 31: 455—461. https://doi.org/10.1002/jcc.21334; PMid:19499576 PMCid:PMC3041641
37. Warne A, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AGW, Schertler GFX, Tate CG. (2011). The structural basis for agonist and partial agonist action on a beta1-adrenergic receptor. Nature. 469: 241—244. https://doi.org/10.1038/nature09746; PMid:21228877 PMCid:PMC3023143
38. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46 (W1): W296-W303. https://doi.org/10.1093/nar/gky427; PMid:29788355 PMCid:PMC6030848
39. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods. 12: 7—8. https://doi.org/10.1038/nmeth.3213; PMid:25549265 PMCid:PMC4428668
40. Zhang Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9: 40. https://doi.org/10.1186/1471-2105-9-40; PMid:18215316 PMCid:PMC2245901
Article received: Feb 02, 2019. Accepted for publication: May 25, 2019.