- Neurodegenerative disease with accumulation of iron in the brain in a child with hemophilia A complicated by inhibitory antibodies
 
Neurodegenerative disease with accumulation of iron in the brain in a child with hemophilia A complicated by inhibitory antibodies
	Modern Pediatrics. Ukraine. (2022). 8(128): 68-79. doi 10.15574/SP.2022.128.68
	Dorosh O. I.1,2, Bodak Kh. I.1, Kozak Ya. R.1, Dubey L. Ya.2, Dworniak O. W.1, Tsymbalyuk-Voloshyn I. P.1, Dushar M. I.2,3
	1CNE of LRC «Western Ukrainian Specialized Pediatric Medical Centre», Ukraine
	2Danylo Halytsky Lviv National Medical University, Ukraine
	3SI «Institute of Hereditary Pathology of the NAMS of Ukraine», Lviv
	For citation: Dorosh OI, Bodak KhI, Kozak YaR, Dubey LYa, Dworniak OW, Tsymbalyuk-Voloshyn IP, Dushar MI. (2022). Neurodegenerative disease with accumulation of iron in the brain in a child with hemophilia A complicated by inhibitory antibodies. Modern Pediatrics. Ukraine. 8(128): 68-79. doi 10.15574/SP.2022.128.68.
	Article received: Sep 28, 2022. Accepted for publication: Dec 20, 2022.
	Hemophilia A is an X-linked recessive disorder caused by a deficiency of plasma coagulation FVIII, which may be inherited or arise from a spontaneous mutation. FVIII deficiency leads to a decrease in normal hemostasis and is manifested by spontaneous or induced bleeding. As a result of hemorrhages in the central nervous system, neurological complications are possible. In such cases, doctors should be on the alert so as not to miss another accompanying pathology.
	Neurodegenerative disease with iron accumulation in the brain is a genetically and clinically heterogeneous group of hereditary progressive disorders of the central nervous system with pronounced iron accumulation in the basal ganglia, which have a specific picture on magnetic resonance imaging of the brain in combination with characteristic clinical signs.
	Purpose – is to describe a clinical case of a combination of two complex hereditary diseases in a 10-year-old boy, hemophilia A of moderate severity, complicated by an inhibitor, and a progressive neurodegenerative disease with accumulation of iron in the brain, with associated neurodegeneration associated with the protein of the mitochondrial membrane.
	The publication reports for the first time a clinical case of a combination of two complex hereditary diseases in a 10-year-old boy, confirmed by molecular genetic studies: hemophilia A of moderate severity, complicated by an inhibitor with the detection of a large deletion of exons 23-26 in the gene, and progressive neurodegeneration with brain iron accumulation, with the presence of a pathogenic mutation of the C19orf12 gene, variant c.204_214del (p.Gly69Argfs*10) in a homozygous state, autosomal recessive type of inheritance, Mitochondrial-membrane Protein-Associated Neurodegeneration. Coagulopathy is controlled by prophylactic administration of emicizumab subcutaneously. Neurodegeneration with brain iron accumulation in the child was manifested by: Friedreich's foot, equinus feet, positive Babinski symptom, high tendon reflexes, optic nerve atrophy; partial dysplasia of both eyes; with myopia of both eyes, impaired accommodation, progressively increasing paresthesias in both legs, impaired gait, ataxic gait, coordination difficulties, muscle atrophy of both legs, visual impairment, rapid fatigue with preserved intelligence and mental development. Magnetic resonance imaging of the brain showed a moderate bilateral symmetrical lesion of the globus pallidus.
	Our report confirms that the use of molecular genetic studies plays an important decisive role in the verification of the disease, often determining its type and possible complications.
	The research was carried out in accordance with the principles of the Helsinki Declaration. The informed consent of the patient was obtained for conducting the studies.
	No conflict of interests was declared by the authors.
	Keywords: hemophilia A, neurodegeneration, brain iron accumulation, C19orf12 mutation, children.
	REFERENCES
	1. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. (2012). MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 59: 2625-2635. https://doi.org/10.1016/j.neuroimage.2011.08.077; PMid:21925274 PMCid:PMC3254708
2. Blair HA. (2019). Emicizumab: A Review in Haemophilia A. Drugs. 79 (15): 1697-1707. https://doi.org/10.1007/s40265-019-01200-2; PMid:31542880
3. Boekhorst J, Lari GR, D'Oiron R, Costa JM, Nováková IRO, Ala FA, Lavergne JM, VAN Heerde WL. (2008). Factor VIII genotype and inhibitor development in patients with haemophilia A: highest risk in patients with splice site mutations. Haemophilia. 14 (4): 729-735. https://doi.org/10.1111/j.1365-2516.2008.01694.x; PMid:18503540
4. Böhm M, Pronicka E, Karczmarewicz E, Pronicki M, Piekutowska-Abramczuk D, Sykut-Cegielska J et al. (2006). Retrospective, multicentric study of 180 children with cytochrome C oxidase deficiency. Pediatr Res. 59 (1): 21-26. https://doi.org/10.1203/01.pdr.0000190572.68191.13; PMid:16326995
5. Carcao M, Escuriola-Ettingshausen C, Santagostino E, Oldenburg J, Liesner Ri, Nolan B, Bátorová A, Haya S, Young G; Future of Immunotolerance Treatment Group. (2019). The changing face of immune tolerance induction in haemophilia A with the advent of emicizumab. Haemophilia. 25 (4): 676-684. https://doi.org/10.1111/hae.13762; PMid:31033112 PMCid:PMC6850066
6. Chalmers EA, Brown SA, Keeling D et al; Paediatric Working Party of UKHCDO. (2007). Early factor VIII exposure and subsequent inhibitor development in children with severe haemophilia A. Haemophilia. 13 (2): 149-155. https://doi.org/10.1111/j.1365-2516.2006.01418.x; PMid:17286767
7. Cohen AR. (2006). New advances in iron chelation therapy. Hematology Am Soc Hematol Educ Program. 42-47. https://doi.org/10.1182/asheducation-2006.1.42; PMid:17124038
8. Deschauer M, Gaul C, Behrmann C, Prokisch H, Zierz S, Haack TB. (2012). C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J. Neurol. 259: 2434-2439. https://doi.org/10.1007/s00415-012-6521-7; PMid:22584950
9. Dogu O, Krebs CE, Kaleagasi H, Demirtas Z, Oksuz N, Walker RH, Paisan-Ruiz C. (2013). Rapid disease progression in adult-onset mitochondrial membrane protein-associated neurodegeneration. Clin Genet. 84: 350-355. https://doi.org/10.1111/cge.12079; PMid:23278385
10. Drecourt A, Babdor J, Dussiot M, Petit F, Goudin N, Garfa-Traore M, Habarou F et al. (2018). Impaired transferrin receptor palmitoylation and recycling in neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 102: 266-277. https://doi.org/10.1016/j.ajhg.2018.01.003; PMid:29395073 PMCid:PMC5985451
11. Dusek P, Schneider SA, Aaseth J. (2016). Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 38: 81-92. https://doi.org/10.1016/j.jtemb.2016.03.010; PMid:27033472
12. Ebbert PT, Xavier F, Seaman CD, Ragni MV. (2020). Emicizumab prophylaxis in patients with haemophilia A with and without inhibitors. Haemophilia. 26 (1): 41-46. https://doi.org/10.1111/hae.13877; PMid:31746522
13. Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I et al. (2013). SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease. Neurology. 81 (17): 1523-1530. https://doi.org/10.1212/WNL.0b013e3182a4a518; PMid:24027061 PMCid:PMC3888171
14. Finkenstedt A, Wolf E, Höfner E, Gasser BI, Bosch S, Bakry R et al. (2010). Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation. J Hepatol. 53: 1101-1107. https://doi.org/10.1016/j.jhep.2010.04.039; PMid:20801540 PMCid:PMC2987498
15. Fischer K, Lassila R, Peyvandi F et al; EUHASS participants. (2015). Inhibitor development in haemophilia according to concentrate. Fouryear results from the European Hаemophilia Safety Surveillance (EUHASS) project. Thromb Haemost. 113 (5): 968-975. https://doi.org/10.1160/TH14-10-0826; PMid:25567324
16. Fredenburg AM, Sethi RK, Allen DD, Yokel RA. (1996). The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology. 108: 191-199. https://doi.org/10.1016/0300-483X(95)03301-U; PMid:8658538
17. Giannoccaro MP, Matteo E, Bartiromo F, Tonon C, Santorelli FM, Liguori R, Rizzo G. (2022). Multiple sclerosis in patients with hereditary spastic paraplegia: a case report and systematic review. Neurol Sci. 43 (9): 5501-5511. https://doi.org/10.1007/s10072-022-06145-1; PMid:35595875
18. Goodeve AC, Williams I, Bray GL, Peake IR. (2000). Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (Recombinate). Recombinate PUP Study Group. Thromb Haemost. 83 (6): 844-848. https://doi.org/10.1055/s-0037-1613931; PMid:10896236
19. Goudemand J, Laurian Y, Calvez T. (2006). Risk of inhibitors in haemophilia and the type of factor replacement. Curr Opin Hematol. 13 (5): 316-322. https://doi.org/10.1097/01.moh.0000239702.40297.ec; PMid:16888435
20. Goudemand J, Peyvandi F, Lacroix-Desmazes S. (2016). Key insights to understand the immunogenicity of FVIII products. Thromb Haemost. 116 (1): S2-S9. https://doi.org/10.1160/TH16-01-0048; PMid:27528279
21. Gouw SC, van der Bom JG, Auerswald G, Ettinghausen CE, Tedgård U, van den Berg HM. (2007). Recombinant versus plasma-derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood. 109 (11): 4693-4697. https://doi.org/10.1182/blood-2006-11-056317; PMid:17218379
22. Gouw SC, van der Bom JG, Ljung R et al; PedNet and RODIN Study Group. (2013). Factor VIII products and inhibitor development in severe hemophilia A. N Engl J Med. 368 (3): 231-239. https://doi.org/10.1056/NEJMoa1208024; PMid:23323899
23. Gouw SC, Van Der Bom JG, Van Den Berg HM, Zewald RA, Ploos Van Amstel JK, Mauser-Bunschoten EP. (2011). Influence of the type of F8 gene mutation on inhibitor development in a single centre cohort of severe haemophilia A patients. Haemophilia. 17 (2): 275-281. https://doi.org/10.1111/j.1365-2516.2010.02420.x; PMid:21070499
24. Gregory A, Lotia M, Jeong SY, Fox R, Zhen D, Sanford L, Hamada J, Jahic A, Beetz C, Freed A, Kurian MA, Cullup T et al. (2019). Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Molec Genet Genomic Med. 7: e00736. Note: Electronic Article. https://doi.org/10.1002/mgg3.736; PMid:31087512 PMCid:PMC6625130
25. Habgood MD, Liu ZD, Dehkordi LS, Khodr HH, Abbott J, Hider RC. (1999). Investigation into the correlation between the structure of hydroxypyridinones and blood-brain barrier permeability. Biochem Pharmacol. 57: 1305-1310. https://doi.org/10.1016/S0006-2952(99)00031-3; PMid:10230774
26. Hamilton KO, Stallibrass L, Hassan I, Jin Y, Halleux C, Mackay M. (1994). The transport of two iron chelators, desferrioxamine B and L1, across Caco-2 monolayers. Br J Haematol. 86: 851-857. https://doi.org/10.1111/j.1365-2141.1994.tb04841.x; PMid:7918082
27. Hartig MB, Iuso A, Haack T, Kmiec T, Jurkiewicz E, Heim K, Roeber S, Tarabin V, Dusi S, Krajewska-Walasek M, Jozwiak S, Hempel M et al. (2011). Absence of an orphan mitochondrial protein, C19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 89: 543-550. https://doi.org/10.1016/j.ajhg.2011.09.007; PMid:21981780 PMCid:PMC3188837
28. Hayflick SJ, Kurian MA, Hogarth P. (2018). Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 147: 293-305. https://doi.org/10.1016/B978-0-444-63233-3.00019-1; PMid:29325618 PMCid:PMC8235601
29. Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, Egel RT, Subramony SH, Goldman JG, Berry-Kravis E, Foulds NC, Hammans SR et al. (2013). New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 80: 268-2753. https://doi.org/10.1212/WNL.0b013e31827e07be; PMid:23269600 PMCid:PMC3589182
30. Horvath R, Holinski-Feder E, Neeve VCM, Pyle A, Griffin H, Ashok D, Foley C, Hudson G, Rautensstrauss B, Nurnberg G, Nurnberg P, Kortler J, et al. (2012). A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Mov. Disord. 27: 789-793. https://doi.org/10.1002/mds.24980; PMid:22508347
31. Iankova V, Karin I, Klopstock T, Schneider SA. (2021). Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders. Front Neurol. 12: 629414. ECollection 2021. https://doi.org/10.3389/fneur.2021.629414; PMid:33935938 PMCid:PMC8082061
32. Jayandharan G, Shaji RV, Baidya S, Nair SC, Chandy M, Srivastava A. (2005). Identification of factor VIII gene mutations in 101 patients with haemophilia A: mutation analysis by inversion screening and multiplex PCR and CSGE and molecular modelling of 10 novel missense substitutions. Haemophilia. 11 (5): 481-491. https://doi.org/10.1111/j.1365-2516.2005.01121.x; PMid:16128892
33. Karin I, Büchner B, Gauzy F, Klucken A, Klopstock T. (2021). Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON)-An International Network on Care and Research for Patients With Neurodegeneration With Brain Iron Accumulation (NBIA). Front Neurol. 12: 642228. ECollection 2021. https://doi.org/10.3389/fneur.2021.642228; PMid:33692746 PMCid:PMC7937633
34. Kasapkara CS, Tumer L, Gregory A, Ezgu F, Inci A, Derinkuyu BE, Fox R, Rogers C, Hayflick S. (2019). A new NBIA patient from Turkey with homozygous C19ORF12 mutation. Acta Neurol. Belg. 119: 623-625. https://doi.org/10.1007/s13760-018-1026-5; PMid:30298423 PMCid:PMC7556727
35. Kleffner I, Wessling C, Gess B, Korsukewitz C, Allkemper T, Schirmacher A, Young P, Senderek J, Husstedt IW. (2015). Behr syndrome with homozygous C19ORF12 mutation. J. Neurol. Sci. 357: 115-118. https://doi.org/10.1016/j.jns.2015.07.009; PMid:26187298
36. Konkle BA, Huston H, Fletcher SN. (2017). Hemophilia A. In: Seattle (WA): University of Washington, Seattle.
37. Landoure G, Zhu P-P, Lourenco CM, Johnson JO, Toro C, Bricceno KV, Rinaldi C, Melleur KG, Sangare M, Diallo O, Pierson TM, Ishiura H et al. (2013). Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12. Hum. Mutat. 34: 1357-1360. https://doi.org/10.1002/humu.22378; PMid:23857908 PMCid:PMC3819934
38. Lee I-C, El-Hattab AW, Wang J, Li F-Y, Weng S-W, Craigen WJ, Wong L-JC. (2012). SURF1-associated Leigh syndrome: a case series and novel mutations. Hum Mutat. 33 (8): 1192-1200. https://doi.org/10.1002/humu.22095; PMid:22488715
39. Lefter A, Mitrea I, Mitrea D, Plaiasu V, Bertoli-Avella A, Beetz C, Cozma L, Tulbă D, Mitu CE, Popescu BO. (2021). Novel C19orf12 loss-of-function variant leading to neurodegeneration with brain iron accumulation. Neurocase. 27 (6): 481-483. https://doi.org/10.1080/13554794.2021.2022703; PMid:34983316
40. Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI. (2017). Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry. 22 (3): 396-406. https://doi.org/10.1038/mp.2016.96; PMid:27400857
41. Liesner RJ, Abraham A, Altisent C, Belletrutti MJ, Carcao M et al. (2021). Simoctocog Alfa (Nuwiq) in Previously Untreated Patients with Severe Haemophilia A: Final Results of the NuProtect Study. Thromb Haemost. 121 (11): 1400-1408. https://doi.org/10.1055/s-0040-1722623; PMid:33581698 PMCid:PMC8570909
42. Mahlangu J, Oldenburg J, Callaghan MU. (2019). Health-related quality of life and health status in persons with haemophilia A with inhibitors: a prospective, multicentre, non-interventional study (NIS) Haemophilia. 25 (3): 382-391. https://doi.org/10.1111/hae.13731; PMid:31016855 PMCid:PMC6850115
43. Mahlangu JN. (2018). Bispecific Antibody Emicizumab for Haemophilia A: A Breakthrough for Patients with Inhibitors. BioDrugs. 32 (6): 561-570. Review. https://doi.org/10.1007/s40259-018-0315-0; PMid:30430367
44. Makris M. (2012). Prophylaxis in haemophilia should be life-long. Blood Transfus. 10 (2): 165-168. doi: 10.2450/2012.0147-11.
45. Mancuso ME, Mannucci PM, Rocino A, Garagiola I, Tagliaferri A, Santagostino E. (2012). Source and purity of factor VIII products as risk factors for inhibitor development in patients with hemophilia A. J Thromb Haemost. 10 (5): 781-790. https://doi.org/10.1111/j.1538-7836.2012.04691.x; PMid:22452823
46. McCary I, Guelcher C, Kuhn J, Butler R, Massey G, Guerrera MF, Ballester L, Raffini L. (2020). Real-world use of emicizumab in patients with haemophilia A: Bleeding outcomes and surgical procedures. Haemophilia. 26 (4): 631-636. https://doi.org/10.1111/hae.14005; PMid:32311809
47. Monfrini E, Melzi V, Buongarzone G, Franco G, Ronchi D, Dilena R, Scola E, Vizziello P, Bordoni A, Bresolin N, Comi GP, Corti S, Di Fonzo A. (2017). A de novo C19orf12 heterozygous mutation in a patient with MPAN. Parkinsonism Relat. Disord. 48: 109-111. https://doi.org/10.1016/j.parkreldis.2017.12.025; PMid:29295770
48. Morphy MA, Feldman JA, Kilburn G. (1989). Hallervorden-Spatz disease in a psychiatric setting. J. Clin. Psychiat. 50: 66-68.
49. Okaygoun D, Oliveira DD, Soman S, Williams R. (2021). Advances in the management of haemophilia: emerging treatments and their mechanisms. J Biomed Sci. 28 (1): 64. https://doi.org/10.1186/s12929-021-00760-4; PMid:34521404 PMCid:PMC8442442
50. Oldenburg J, Lacroix-Desmazes S, Lillicrap D. (2015). Alloantibodies to therapeutic factor VIII in hemophilia A: the role of von Willebrand factor in regulating factor VIII immunogenicity. Haematologica. 100 (2): 149-156. https://doi.org/10.3324/haematol.2014.112821; PMid:25638804 PMCid:PMC4803147
51. Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, Santagostino E, Kruse-Jarres R, Negrier C, Kessler C, Valente N, Asikanius E, Levy GG, Windyga J, Shima M. (2017). Emicizumab Prophylaxis in Hemophilia A with Inhibitors. N Engl J Med. 377 (9): 809-818. Clinical Trial. https://doi.org/10.1056/NEJMoa1703068; PMid:28691557
52. Oldenburg J, Pavlova A. (2006). Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia. 12 (6): 15-22. Review. https://doi.org/10.1111/j.1365-2516.2006.01361.x; PMid:17123389
53. Orphanet. (2010). Neurodegeneration With Brain Iron Accumulation. URL: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=385.
54. Peyvandi F, Garagiola I. (2018). Product type and other environmental risk factors for inhibitor development in severe hemophilia A. Res Pract Thromb Haemost. 2 (2): 220-227. https://doi.org/10.1002/rth2.12094; PMid:30046724 PMCid:PMC6055565
55. Piekutowska-Abramczuk D, Popowska E, Pronicki M, Karczmarewicz E, Tylek-Lemanska D, Sykut-Cegielska J, Szymanska-Dembinska T, Bielecka L, Krajewska-Walasek M, Pronicka E. (2009). High prevalence of SURF1 c.845_846delCT mutation in Polish Leigh patients. Eur J Paediatr Neurol. 13 (2): 146-53. https://doi.org/10.1016/j.ejpn.2008.03.009; PMid:18583168
56. Pipe SW, Shima M, Lehle M, Shapiro A, Chebon S, Fukutake K, Key NS, Portron A, Schmitt C, Podolak-Dawidziak M, Selak Bienz N, Hermans C, Campinha-Bacote A, Kiialainen A, Peerlinck K, Levy GG, Jiménez-Yuste V. (2019). Efficacy, safety, and pharmacokinetics of emicizumab prophylaxis given every 4 weeks in people with haemophilia A (HAVEN 4): a multicentre, open-label, non-randomised phase 3 study. Lancet Haematol. 6 (6): e295-e305. Clinical Trial. https://doi.org/10.1016/S2352-3026(19)30054-7; PMid:31003963
57. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA. (2012). The role of metallobiology and amyloid-β peptides in Alzheimer's disease. J Neurochem. 120 (1): 149-166. https://doi.org/10.1111/j.1471-4159.2011.07500.x; PMid:22121980
58. Santagostino E, Young G, Escuriola Ettingshausen C, JimenezYuste V, Carcao M. (2019). Inhibitors: a need for eradication? Acta Haematol. 141 (3): 151-155. https://doi.org/10.1159/000495454; PMid:30783066
59. Spaull RVV, Soo AKS, Hogarth P, Hayflick SJ, Kurian MA. (2021). Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor Other Hyperkinet Mov (N Y). 11: 51. https://doi.org/10.5334/tohm.661; PMid:34909266 PMCid:PMC8641530
60. Srivastava A, Santagostino E, Dougall A et al. (2020). WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia. 26 (6): 1-158. https://doi.org/10.1111/hae.14046; PMid:32744769
61. Tello C, Darling A, Lupo V, Pérez-Dueñas B, Espinós C. (2018). On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet. 93 (4): 731-740. https://doi.org/10.1111/cge.13057; PMid:28542792
62. Tranchant C, Koob M, Anheim M. (2017). Parkinsonian-Pyramidal syndromes: A systematic review. Parkinsonism Relat Disord. 39: 4-16. https://doi.org/10.1016/j.parkreldis.2017.02.025; PMid:28256436
63. Villarreal-Martínez L, Sepúlveda-Orozco MDC, García-Viera DA, Robles-Sáenz DA, Bautista-Gómez AJ, Ortiz-Castillo M, González-Martínez G, Mares-Gil JE. (2021). Spinal epidural hematoma in a child with haemophilia A with high titer inhibitors and follow-up with prophylactic emicizumab: case report and literature review. Blood Coagul Fibrinolysis. 32(6): 418-422. https://doi.org/10.1097/MBC.0000000000001038; PMid:33859115
64. Walsh CE, Jiménez-Yuste V, Auerswald G, Grancha S. (2016). The burden of inhibitors in haemophilia patients. Thromb Haemost. 116 (1): S10-S17. https://doi.org/10.1160/TH16-01-0049; PMid:27528280
65. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. (2014). The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13: 1045-1060. https://doi.org/10.1016/S1474-4422(14)70117-6; PMid:25231526
66. Xu J, Jia Z, Knutson MD, Leeuwenburgh C. (2012). Impaired iron status in aging research. Int J Mol Sci. 13: 2368-2386. https://doi.org/10.3390/ijms13022368; PMid:22408459 PMCid:PMC3292028
      
 
 
 
 
 
 