• Modern prognosis markers of preeclampsia
en To content

Modern prognosis markers of preeclampsia

HEALTH OF WOMAN. 2019.10(146): 77–91; doi 10.15574/HW.2019.146.77
 Romanenko T. G., Sulimenko O. M.
Shupyk National Medical Academy of Postgraduate Education MH of Ukraine, Kiev

Hypertensive disorders during pregnancy are one of the leading causes of maternal and perinatal morbidity and mortality worldwide. According to WHO, severe preeclampsia complicates from 2 to 8% of all pregnancies and in the structure of direct causes of maternal mortality still occupies 2 place and is about 14%. Preeclampsia remains one of the main causes of infant morbidity (640–780‰) and perinatal mortality (18–30‰).The search for clinical diagnostic markers that would allow high precision and specificity to determine the onset time of preeclampsia. None of the markers known today are alone capable of reliably confirming the development of preeclampsia. The prognostic model is an alternative basis for clinical practice that allows for the prediction of results and for timely decision-making on how to improve them.
The practical recommendations of the world’s major profile organizations on the use of prognostic models are reviewed. The position of the key profile organizations on the prediction of pre-eclampsia at the present stage and the involvement of prognostic models in this study are investigated. The data of the conducted researches on the use of biochemical markers and their combination in predicting the development of preeclampsia were collected. The most promising prognostic models using anamnestic, instrumental data and biochemical marker results have been studied. The predictive value and specificity of these models for determining the early and late manifestation of preeclampsia, as well as their possible introduction into clinical practice, are presented.
Key words: preeclampsia, prognosis, pregnancy, maternal mortality, hypertension, biochemical markers.

REFERENCES

1. Ozimek JA, Eddins RM, Greene N, Karagyozyan D, Pak S, Wong M. 2016. Opportunities for improvement in care among women with severe maternal morbidity. Am J Obstet Gynecol. 215:509.e 501–506. https://doi.org/10.1016/j.ajog.2016.05.022; PMid:27210068

2. Herraiz I et al. 2015. Angiogenesis-related biomarkers (sFlt-1/PLGF) in the prediction and diagnosis of placental dysfunction: an approach for clinical integration. Int. J. Mol. Sci. 16;8:19009-19026. https://doi.org/10.3390/ijms160819009 PMid:26287164 PMCid:PMC4581283

3. Friedman AM, Cleary KL. 2014. Prediction and prevention of ischemic placental disease. Semin. Perinatol. 38;3: 177-182. https://doi.org/10.1053/j.semperi.2014.03.002; PMid:24836830

4. Cunningham F et al. 2014. Williams Obstetrics, 24th ed. New-York, McGraw-Hill.

5. Aleksandrova AA, Gutnikova LV, Derevyanchuk EG. 2011. Genomnyie i postgenomnyie markeryi razvitiya platsentyi i ploda. Rostovn/D, YuFU: 46-48.

6. Barton JR et al. 2011. Elective delivery at 340(/)7 to 366(/)7 weeks’ gestation and its impact on neonatal outcomes in women with stable mild gestational hypertension. Am. J. Obstet. Gynecol. 204;1: 44-45. https://doi.org/10.1016/j.ajog.2010.08.030; PMid:20934682

7. Abalos E, Cuesta C, Carroli G, Qureshi Z, Widmer M, Vogel J, Souza J. 2014. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization multicountry survey on maternal and newborn health. BJOG : an international journal of obstetrics and gynecology 121:14–24. https://doi.org/10.1111/1471-0528.12629; PMid:24641531

8. Scott H, Danel I. 2016. Accountability for improving maternal and newborn health. Best Practice & Research Clinical Obstetrics & Gynaecology 36:45–56. https://doi.org/10.1016/j.bpobgyn.2016.05.009; PMid:27473405

9. Abstracts of the XXII FIGO World Congress of Gynecology & Obstetrics. Int J Gynaecol Obstet. 143;3:43-991. 2018, Oct. https://doi.org/10.1002/ijgo.12584; PMid:30306572

10. Nakaz No.676 MOZ Ukrainy vid 31.12.2004 r. «Pro zatverdzhennia klinichnykh protokoliv z akusherskoi ta hinekolohichnoi dopomohy v Ukraini «Hipertenzyvni rozlady pid chas vahitnosti» 2004.

11. ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet Gynecol. 132(1):e44-e52. 2018, Jul. https://doi.org/10.1097/AOG.0000000000002708; PMid:29939940

12. Poon LC, Kametas NA, Chelemen T, Leal A, Nicolaides KH. 2010, Feb. Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. J Hum Hypertens. 24(2):104-10. https://doi.org/10.1038/jhh.2009.45; PMid:19516271

13. National Collaborating Centre for Women’s and Children’s Health (UK). Hypertension in Pregnancy: The Management of Hypertensive Disorders During Pregnancy. London, RCOG Press. 2010

14. ACOG. First-trimester risk assessment for early-onset preeclampsia. Obstetrics and Gynecology 126:25-27. 2015. https://doi.org/10.1097/AOG.0000000000001049; PMid:26287789

15. O’Gorman et al. 2017. Multicenters creening for preeclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation: comparison to NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol. 49: 756-760. https://doi.org/10.1002/uog.17455; PMid:28295782

16. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. 2001. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 20(1):IX-XIV. https://doi.org/10.3109/10641950109152635; PMid:12044323

17. Gerretsen G, Huisjes HJ, Elema JD. 1981. Morphological changes of the spiral arteries in the placental bed in relation to preeclampsia and fetal growth retardation. BJOG 88: 876– 881. https://doi.org/10.1111/j.1471-0528.1981.tb02222.x; PMid:7272259

18. Steegers EA, von Dadelszen P, Duvekot JJ et al. 2010. Pre-eclampsia. Lancet 376(9741):631–44. https://doi.org/10.1016/S0140-6736(10)60279-6

19. Wikström A-K, Larsson A, Eriksson UJ, Nash P, NordénLindeberg S, Olovsson M. 2007. Placental growth factor and soluble FMS-like tyrosine kinase-1 in early-onset and late-onset preeclampsia. Obstet Gynecol. 109(6):1368–1374. https://doi.org/10.1097/01.AOG.0000264552.85436.a1; PMid:17540809

20. Bauman A. 1990. The epidemiology of clinical tests. Aust Prescr. 13:62-4. https://doi.org/10.18773/austprescr.1990.001

21. Magee LA, von Dadelszen P, Stones W, Mathai M. 2016.The FIGO Textbook of Pregnancy Hypertension: an evidence-based guide to monitoring, prevention and management. Carlisle: The Global Library of Women’s Medicine/

22. Šimundić AM. 2009, Jan 20. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC. 19(4):203-11.

23. ESC Guidelines for the management of cardiovascular diseases during pregnancy. 2018, Sep 7. 39(34):3165-3241.

24. Cunningham, F. Gary et al. 2014. Williams Obstetrics. 24th edition. New York: McGraw-Hill Education.

25. Gasse C, Côté M, Chaillet N, Giguère Y, Blanchet G, Tétu A, Bujold E. 2017. First-trimester mean arterial blood pressure to predict the risk of preeclampsia. Am. J. Obstet. Gynecol. 216 (1): S544–S545. https://doi.org/10.1016/j.ajog.2016.11.873

26. Gallo D, Poon L, Fernandez M, Wright D, Nicolaides K. 2014. Prediction of Preeclampsia by Mean Arterial Pressure at 11–13 and 20–24 Weeks’ Gestation. Fetal Diagn Ther. 36(1):28–37. https://doi.org/10.1159/000360287; PMid:24752037

27. Gasse C, Boutin A, Coté M, Chaillet N, Bujold E, Demers S. 2018, Apr. First-trimester mean arterial blood pressure and the risk of preeclampsia: The Great Obstetrical Syndromes (GOS) study. Pregnancy Hypertens 12:178-182. https://doi.org/10.1016/j.preghy.2017.11.005; PMid:29175170

28. Moore Simas TA et al. 2007. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am. J. Obstet. Gynecol. 197;3: 241-248. https://doi.org/10.1016/j.ajog.2007.06.030; PMid:17826405

29. Harris LK et al. 2014. Association of inflammatory cytokines, lipid peroxidation end products and nitric oxide with the clinical severity and fetal outcome in preeclampsia in Indian women. Indian J. Clin. Biochem. 29;2:139144. https://doi.org/10.1007/s12291-013-0320-5; PMid:24757293 PMCid:PMC3990799

30. Cnossen JS et al. 2008. Accuracy of mean arterial pressure and blood pressure measurements in predicting preeclampsia: Systematic review and meta-analysis. BMJ. 336: 1117-1120. https://doi.org/10.1136/bmj.39540.522049.BE; PMid:18480117 PMCid:PMC2386627

31. Cote A, von Dadelszen P, Moutquin J, Ardilouze J, Magee LA. 2010. Microalbuminuria and the Hypertensive Disorders of Pregnancy. Curr Hypertens Rev 6(1):8–19. https://doi.org/10.2174/157340210790231690

32. Hafner E, Metzenbauer M, Stümpflen I, Waldhör T, Philipp K. 2010, Sep. First trimester placental and myometrial blood perfusion measured by 3D power Doppler in normal and unfavourable outcome pregnancies. Placenta 31(9):756-63. https://doi.org/10.1016/j.placenta.2010.06.011; PMid:20633928

33. Caruso A, Caforio L, Testa AC et al. 1996. Chronic hypertension in pregnancy: color Doppler investigation of uterine arteries as a predictive test for superimposed preeclampsia and adverse perinatal outcome. Journal of Perinatal Medicine 24: (2)141-53. https://doi.org/10.1515/jpme.1996.24.2.141; PMid:8773940

34. Matevosyan NR. 2015, May. Predictive accuracy of the first trimester Doppler scan: a meta-study. Wien Med Wochenschr. 165(9-10):199-209. https://doi.org/10.1007/s10354-015-0358-5; PMid:26077833

35. Crispi F, Llurba E, Domínguez C, Martín-Gallán P, Cabero L, Gratacós E. 2008, Mar. Predictive value of angiogenic factors and uterine artery Doppler for early-versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol. 31(3):303-9. https://doi.org/10.1002/uog.5184; PMid:18058842

36. Bolin M, Wikström A, Wiberg-Itzel E, Olsson A, Ringvall M, Sundström-Poromaa I et al. 2012. Prediction of Preeclampsia by Combining Serum Histidine-Rich Glycoprotein and Uterine Artery Doppler. Am J Hypertens. 25(12):1305–1310. https://doi.org/10.1038/ajh.2012.112; PMid:22895448

37. Papageorghiou AT, Yu CKH, Cicero S, Bower S, Nicolaides KH. 2002. Second-trimester uterine artery Doppler screening in unselected populations: a review. J Matern Fetal Neonatal Med 12(2):78–88. https://doi.org/10.1080/jmf.12.2.78.88; PMid:12420836

38. Albaiges G, Missfelder-Lobos H, Lees C, Parra M, Nicolaides KH. 2000, Oct. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks’ gestation. Obstet Gynecol. 96(4):559-64. https://doi.org/10.1097/00006250-200010000-00015; PMid:11004359

39. García B, Llurba E, Valle L, Gómez-Roig MD, Juan M, Pérez-Matos C, Fernández M, García-Hernández JA, Alijotas-Reig J, Higueras MT, Calero I, Goya M, Pérez-Hoyos S, Carreras E, Cabero L. 2016, Jun. Do knowledge of uterine artery resistance in the second trimester and targeted surveillance improve maternal and perinatal outcome? UTOPIA study: a randomized controlled trial. Ultrasound Obstet Gynecol. 47(6):680-9. https://doi.org/10.1002/uog.15873; PMid:26823208

40. Kleinrouweler CE, Bossuyt PMM, Thilaganathan B, Vollebregt KC, Arenas Ramírez J, Ohkuchi A et al. 2013. Value of adding second-trimester uterine artery Doppler to patient characteristics in identification of nulliparous women at increased risk for pre-eclampsia: an individual patient data meta-analysis. Ultrasound Obstet Gynecol 42(3):257–267. https://doi.org/10.1002/uog.12435; PMid:23417857

41. Caradeux J, Serra R, Nien J, Pérez-Sepulveda A, Schepeler M, Guerra F et al. 2013, Aug. First trimester prediction of early onset preeclampsia using demographic, clinical, and sonographic data: a cohort study. 33(8):732-6. https://doi.org/10.1002/pd.4113; PMid:23584890

42. Oliveira N, Magder LS, Blitzer MG, Baschat AA. 2014. First-trimester prediction of pre-eclampsia: external validity of algorithms in a prospectively enrolled cohort. Ultrasound Obstet Gynecol. 44(3):279–285. https://doi.org/10.1002/uog.13435; PMid:24913190

43. Goetzinger KR, Tuuli MG, Cahill AG, Macones GA, Odibo AO. 2014, Dec. Development and validation of a risk factor scoring system for first-trimester prediction of preeclampsia. Am J Perinatol. 31(12):1049-56. https://doi.org/10.1055/s-0034-1371705; PMid:24705967 PMCid:PMC4185255

44. Khalil A, Muttukrishna S, Harrington K, Jauniaux E. 2008, Jul 23. Effect of antihypertensive therapy with alpha methyldopa on levels of angiogenic factors in pregnancies with hypertensive disorders. PLoS One. 3(7):e2766. https://doi.org/10.1371/journal.pone.0002766; PMid:18648513 PMCid:PMC2447877

45. Murashko AV, Magomedova ShM. 2015. Rol faktorov rosta v razvitii platsentarnoy nedostatochnosti i preeklampsii. Arhiv akusherstva i ginekologii im. V.F. Snegireva. 2;3:25-28.

46. Robinson CJ et al. 2006. Evaluation of placenta growth factor and soluble Fms-like tyrosine kinase 1 receptor levels in mild and severe preeclampsia. Am J Obstet Gynecol. 195 (1): 255-259. https://doi.org/10.1016/j.ajog.2005.12.049; PMid:16813756

47. Redman CW, Sargent IL. 2009. Placental Stress and Pre-eclampsia: A Revised View. Placenta. Suppl A:38-42. https://doi.org/10.1016/j.placenta.2008.11.021; PMid:19138798

48. Robinson CJ, Stringer SE. 2001. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 114;(5): 853-865.

49. Benton SJ, McCowan LM, Heazell AE, Grynspan D, Hutcheon JA, Senger C, Burke O, Chan Y, Harding JE, Yockell-Lelièvre J, Hu Y, Chappell LC, Griffin MJ, Shennan AH, Magee LA, Gruslin A, von Dadelszen P. 2016, Jun. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta 42:1-8. https://doi.org/10.1016/j.placenta.2016.03.010; PMid:27238707

50. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF et al. 2004. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 350: 672–683. https://doi.org/10.1056/NEJMoa031884; PMid:14764923

51. Ivanets TYu i dr. 2015. Diagnosticheskaya znachimost opredeleniya platsentarnogo faktora rosta i rastvorimoy FMS-podobnoy tirozinkinazyi-1 v kachestve markerov preeklampsii. Problemyi reproduktsii 21;4: 129-133. https://doi.org/10.17116/repro2015214129-133

52. Makarov OV i dr. 2014. Rol angiogennyih faktorov rosta v patogeneze preeklampsii i platsentarnoy nedostatochnosti. Akusherstvo i ginekologiya 12: 64-70.

53. Poon LC, Nicolaides KH. 2014. Early prediction of preeclampsia. Obstetrics and Gynecology International. https://doi.org/10.1155/2014/297397; PMid:25136369 PMCid:PMC4127237

54. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides K.H. 2013. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 33:8-15. https://doi.org/10.1159/000341264; PMid:22906914

55. Ghosh SK, Raheja S, Tuli A, Raghunandan C, Agarwal S. 2013. Can maternal serum placental growth factor estimation in early second trimester predict the occurrence of early onset preeclampsia and/or early onset intrauterine growth restriction? A prospective cohort study. J Obstet Gynaecol Res. 39(5): 881–890. https://doi.org/10.1111/jog.12006; PMid:23496304

56. Honigberg MC, Cantonwine DE, Thomas AM, Lim KH, Parry SI, McElrath TF. 2016, Mar. Analysis of changes in maternal circulating angiogenic factors throughout pregnancy for the prediction of preeclampsia. J Perinatol. 36(3):172-7. https://doi.org/10.1038/jp.2015.170; PMid:26583938

57. Ghosh SK, Raheja S, Tuli A, Raghunandan C, Agarwal S. 2013. Is serum placental growth factor more effective as a biomarker in predicting early onset preeclampsia in early second trimester than in first trimester of pregnancy? Arch Gynecol Obstet. 287(5):865–873. https://doi.org/10.1007/s00404-012-2662-2; PMid:23224699

58. Chappell LC, Duckworth S, Seed PT, Griffin M, Myers J, Mackillop L, Simpson N, Waugh J, Anumba D, Kenny LC, Redman CW, Shennan AH. 2013, Nov 5. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation. 128(19):2121-31. https://doi.org/10.1161/CIRCULATIONAHA.113.003215; PMid:24190934

59. Bian Z, Shixia C, Duan T. 2015. First-Trimester Maternal Serum Levels of sFLT1, PGF and ADMA Predict Preeclampsia. PLoS One 10(4):e0124684. Published 2015, Apr 23. https://doi.org/10.1371/journal.pone.0124684; PMid:25906026 PMCid:PMC4408038

60. Kenny LC, Black MA, Poston L, Taylor R, Myers JE, Baker PN et al. 2014. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the screening for pregnancy endpoints (SCOPE) international cohort study. Hypertension 64(3):644–52. https://doi.org/10.1161/HYPERTENSIONAHA.114.03578; PMid:25122928

61. Crovetto F, Figueras F, Triunfo S, Crispi F, Rodriguez-Sureda V, Dominguez C et al. 2015. First trimester screening for early and late preeclampsia based on maternal characteristics, biophysical parameters, and angiogenic factors. Prenat Diagn. 35(2):183–91. https://doi.org/10.1002/pd.4519; PMid:25346181

62. Parra-Cordero M, Rodrigo R, Barja P, Bosco C, Rencoret G, Sepúlveda-Martinez A, Quezada S. 2013, May. Prediction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet Gynecol. 41(5):538-44. https://doi.org/10.1002/uog.12264; PMid:22807133

63. Ghosh SK, Raheja S, Tuli A, Raghunandan C, Agarwal S. 2013, Mar-Apr. Serum placental growth factor as a predictor of early onset preeclampsia in overweight/obese pregnant women. J Am Soc Hypertens. 7(2):137-48. https://doi.org/10.1016/j.jash.2012.12.006; PMid:23394804

64. Hornig C, Barleon B, Ahmad S, Vuorela P, Ahmed A, Weich HA. 2000, Apr. Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab Invest. 80(4):443-54. https://doi.org/10.1038/labinvest.3780050; PMid:10780661

65. Maynard SE, Min JY, Merchan J et al. 2003. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 111(5):649-58. https://doi.org/10.1172/JCI17189; PMid:12618519 PMCid:PMC151901

66. Maynard SE, Karumanchi SA. 2011. Angiogenic factors and preeclampsia. Semin Nephrol. 31(1):33-4. https://doi.org/10.1016/j.semnephrol.2010.10.004; PMid:21266263 PMCid:PMC3063446

67. Mutter WP, Karumanchi SA. 2008. Molecular mechanisms of preeclampsia. Microvas Res. 75 (1): 1-8. https://doi.org/10.1016/j.mvr.2007.04.009; PMid:17553534 PMCid:PMC2241748

68. Roberts JM. 2000, Feb. Preeclampsia: what we know and what we do not know. Semin Perinatol. 24(1):24-8. https://doi.org/10.1016/S0146-0005(00)80050-6

69. McKeeman GC, Ardill JE, Caldwell CM, Hunter AJ, McClure N. 2004. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. Am J Obstet Gynecol. 191: 1240–1246. https://doi.org/10.1016/j.ajog.2004.03.004; PMid:15507947

70. Kleinrouweler CE, Wiegerinck MM, Ris-Stalpers C, Bossuyt PM, van der Post JA, von Dadelszen P, Mol BW, Pajkrt E. 2012, Jun. EBM CONNECT Collaboration. Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG. 119(7):778-87. https://doi.org/10.1111/j.1471-0528.2012.03311.x; PMid:22433027

71. Ohkuchi A, Hirashima C, Takahashi K, Suzuki H, Matsubara S, Suzuki M. 2013, Dec. Onset threshold of the plasma levels of soluble fms-like tyrosine kinase 1/placental growth factor ratio for predicting the imminent onset of preeclampsia within 4 weeks after blood sampling at 19-31 weeks of gestation. Hypertens Res. 36(12):1073-80. https://doi.org/10.1038/hr.2013.95; PMid:23966056

72. Averkieva VS, Lisyanskaya MV. 2016. Innovatsionnyie biomarkeryi dlya diagnostiki i prognoza preeklampsii. Laboratoriya LPU. Spetsvyipusk 8: 20-23.

73. Liu Y, Zhao Y, Yu A, Zhao B, Gao Y, Niu H. 2015. Diagnostic accuracy of the soluble Fms-like tyrosine kinase-1/placental growth factor ratio for preeclampsia: a meta-analysis based on 20 studies. Arch Gynecol Obstet. 292:507-18. https://doi.org/10.1007/s00404-015-3671-8; PMid:25716670

74. Engels T, Pape J, Schoofs K, Henrich W, Verlohren S. 2013, Nov. Automated measurement of sFlt1, PlGF and sFlt1/PlGF ratio in differential diagnosis of hypertensive pregnancy disorders. Hypertens Pregnancy 32(4):459-73. https://doi.org/10.3109/10641955.2013.827205; PMid:23957293

75. Rana S, Powe CE, Salahuddin S et al. 2012. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 125:911-9. https://doi.org/10.1161/CIRCULATIONAHA.111.054361; PMid:22261192 PMCid:PMC3319742

76. Rana S, Schnettler WT, Powe C et al. 2013. Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens Pregnancy 32:189-201. https://doi.org/10.3109/10641955.2013.784788; PMid:23725084 PMCid:PMC3744824

77. Verlohren S et al. 2012. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am. J. Obstet Gynecol. 206;1: 58. e1-8. https://doi.org/10.1016/j.ajog.2011.07.037; PMid:22000672

78. Hund M, Allegranza D, Schoedl M, Dilba P, Verhagen-Kamerbeek W, Stepan H. 2014. Multicenter prospective clinical study to evaluate the prediction of short-term outcome in pregnant women with suspected preeclampsia (PROGNOSIS): study protocol. BMC Pregnancy Childbirth 14:324. https://doi.org/10.1186/1471-2393-14-324; PMid:25230734 PMCid:PMC4262142

79. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstro¨m M et al. 2016.Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 374:13–22. https://doi.org/10.1056/NEJMoa1414838; PMid:26735990

80. Stepan H et al. 2008. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion Am. J. Obstet. Gynecol. 198;2:175-176. https://doi.org/10.1016/j.ajog.2007.08.052; PMid:18226617

81. Akolekar R et al. 2008. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of preeclampsia. Ultrasound Obstet. Gynecol. 32;6: 732-739. https://doi.org/10.1002/uog.6244; PMid:18956425

82. Jim B, Karumanchi SA. 2017, Jul. Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Semin Nephrol. 37(4):386-397. https://doi.org/10.1016/j.semnephrol.2017.05.011; PMid:28711078

83. Perni U, Sison C, Sharma V et al. Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy. Hypertension. 2012; 59: 740-6. https://doi.org/10.1161/HYPERTENSIONAHA.111.181735; PMid:22311907

84. Rolfo A, Attini R, Nuzzo AM et al. 2013. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 83:177-81. https://doi.org/10.1038/ki.2012.348; PMid:23014459

85. Kumasawa K, Ikawa M, Kidoya H et al. 2011. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci U S A. 108:1451-5. https://doi.org/10.1073/pnas.1011293108; PMid:21187414 PMCid:PMC3029692

86. Costantine MM, Cleary K and Eunice Kennedy Shriver National Institute of Child Health and Human Development Obstetric–Fetal Pharmacology Research Units Network. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet Gynecol. 121:349-53. 2013. https://doi.org/10.1097/AOG.0b013e31827d8ad5; PMid:23344286

87. Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M. 1992, Sep 25. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 267(27):19027-30.

88. Murashko LE. 2009. Oksid azota v geneze preeklampsii. Akusherstvo i ginekologiya 6: 24-27.

89. Powe CE, Levine RJ, Karumanchi SA. 2011, Jun 21. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 123(24):2856-69. https://doi.org/10.1161/CIRCULATIONAHA.109.853127; PMid:21690502 PMCid:PMC3148781

90. Nishizawa H et al. 2011. Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod. Biol. Endocrinol. 9:107. https://doi.org/10.1186/1477-7827-9-107; PMid:21810232 PMCid:PMC3199758

91. Winn VD et al. 2009. Severe preeclampsia-related changes in gene expression at the maternalfetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin2. Endocrinology 150: 452-462. https://doi.org/10.1210/en.2008-0990; PMid:18818296 PMCid:PMC2630905

92. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. 2006, Jun. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 12(6):642-9. https://doi.org/10.1038/nm1429; PMid:16751767

93. Pozdnyakov IM, Shirinskaya AV. 2015. Uroven leptina, pro– i antivospalitelnyih tsitokinov pri beremennosti, oslozhnennoy razlichnyimi formami arterialnoy gipertenzii. Tsitokinyi i vospalenie 14;1: 75-79.

94. Robinson CJ, Johnson DD. 2007. Soluble endoglin as a second-trimester marker for preeclampsia. Am. J. Obstet. Gynecol. 197 (2):174.e1-5. https://doi.org/10.1016/j.ajog.2007.03.058; PMid:17689640

95. Ngene NC, Moodley J. 2018, Apr. Role of angiogenic factors in the pathogenesis and management of pre-eclampsia. Int J Gynaecol Obstet. 141(1):5-13. https://doi.org/10.1002/ijgo.12424; PMid:29222938

96. Cluver CA, Walker SP, Mol BW, Theron GB, Hall DR, Hiscock R, Hannan N, Tong S. 2015, Oct 28. Double blind, randomised, placebo-controlled trial to evaluate the efficacy of esomeprazole to treat early onset pre-eclampsia (PIE Trial): a study protocol. BMJ Open. 5(10):e008211. https://doi.org/10.1136/bmjopen-2015-008211; PMid:26510725 PMCid:PMC4636658

97. Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. 2018. Preeclampsia: Novel Mechanisms and Potential Therapeutic Approaches. Front Physiol. 9:973. https://doi.org/10.3389/fphys.2018.00973; PMid:30090069 PMCid:PMC6068263

98. Saleh L, Samantar R, Garrelds IM, van den Meiracker AH, Visser W, Danser AHJ. 2017, Sep. Low Soluble Fms-Like Tyrosine Kinase-1, Endoglin, and Endothelin-1 Levels in Women With Confirmed or Suspected Preeclampsia Using Proton Pump Inhibitors. Hypertension 70(3):594-600. https://doi.org/10.1161/HYPERTENSIONAHA.117.09741; PMid:28716993

99. Karumanchi SA. 2016, Jun. Angiogenic Factors in Preeclampsia: From Diagnosis to Therapy. Hypertension 67(6):1072-9. https://doi.org/10.1161/HYPERTENSIONAHA.116.06421; PMid:27067718

100. Sidorova IS i dr. 2009. Harakter izmeneniy markerov angiogeneza. pri gestoze. Zhurnal Akusherstvo i ginekologiya 3: 38.

101. Celik H, Avci B, Isik Y. 2013. Vascular endothelial growth factor and endothelin-1 levels in normal pregnant women and pregnant women with pre-eclampsia. J. Obstet. Gynaecol. 33: 355-358. https://doi.org/10.3109/01443615.2013.769944; PMid:23654314

102. Masoura S et al. 2014. Biomarkers of endothelial dysfunction in preeclampsia and neonatal morbidity: a case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 175:119-123. https://doi.org/10.1016/j.ejogrb.2014.01.012; PMid:24485669

103. Fan X et al. 2014. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J. Clin. Invest. 124: 4941-4952. https://doi.org/10.1172/JCI76864; PMid:25329693 PMCid:PMC4347223

104. Gillon TE, Pels A, von Dadelszen P, MacDonell K, Magee LA. 2014. Hypertensive disorders of pregnancy: a systematic review of international clinical practice guidelines. PLoS One 9(12):e113715. https://doi.org/10.1371/journal.pone.0113715; PMid:25436639 PMCid:PMC4249974

105. Zhang YG, Yang HL, Zhang YP, Ma QL, Long Y, Zheng ZX. 2018, Oct. Pigment epithelium-derived factor/vascular endothelial growth factor ratio for early prediction of preeclampsia: A prospective multicenter study in China. Pregnancy Hypertens. 14:43-48. https://doi.org/10.1016/j.preghy.2018.07.005; PMid:30527117

106. Wong MK, Shawky SA, Aryasomayajula A, Green MA, Ewart T, Selvaganapathy PR, Raha S. 2018, Jun 25. Extracellular matrix surface regulates self-assembly of three-dimensional placental trophoblast spheroids. PLoS One. 13(6):e0199632. https://doi.org/10.1371/journal.pone.0199632; PMid:29940046 PMCid:PMC6016924

107. Rogova LN, Shesternina NV, Zamechnik TV, Fastova IA. 2011. Matriksnyie metalloproteinazyi, ih rol v fiziologicheskih i patologicheskih protsessah (obzor). Vestnik novyih meditsinskih tehnologiy 18; 2: 86-89.

108. Рrеz-Sерlvеdа A еt аl. 2012. Lоw 2-mеthохyеstrаdiоl lеvеls аt thе first trimеstеr оf рrеgnаnсy аrеаssосiаtеd with thе dеvеlорmеnt оf рrеесlаmрsiа. Рrеnаt. Diаgn. 32;11:1053-1058.

109. Li W, Mata KM, Mazzuca MQ, Khalil RA. 2014. Altered matrix metalloproteinase-2 and-9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochemical pharmacology 89(3):370–385. https://doi.org/10.1016/j.bcp.2014.03.017; PMid:24704473 PMCid:PMC4034157

110. Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, Vadillo-Ortega F, Zaga-Clavellina V, Estrada-Gutierrez G. 2017, Jul 20. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci. 18(7). https://doi.org/10.3390/ijms18071448; PMid:28726716 PMCid:PMC5535939

111. Ovcharova VS. 2016. Molekulyarnyie mehanizmyi etiopatogeneza preeklampsii. ENI Zabaykalskiy meditsinskiy vestnik 4:129-134.

112. Bonnans C, Chou J, Werb Z. 2014, Dec. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 15(12):786-801. https://doi.org/10.1038/nrm3904; PMid:25415508 PMCid:PMC4316204

113. Isaka K, Usuda S, Ito H, Sagawa Y, Nakamura H, Nishi H, Suzuki Y, Li YF, Takayama M. 2003, Jan. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 24(1):53-64. https://doi.org/10.1053/plac.2002.0867; PMid:12495660

114. Plaks V, Rinkenberger J, Dai J, Flannery M, Sund M, Kanasaki K, Ni W, Kalluri R, Werb Z. 2013, Jul 2. Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proc Natl Acad Sci USA 110(27). https://doi.org/10.1073/pnas.1309561110; PMid:23776237 PMCid:PMC3704020

115. Palei AC, Granger JP, Tanus-Santos JE. 2013, Mar. Matrix metalloproteinases as drug targets in preeclampsia. Curr Drug Targets. 14(3):325-34. https://doi.org/10.2174/1389450111314030004; PMid:23316964

116. Chen J, Khalil RA. 2017. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. Prog Mol Biol Transl Sci. 148:87-165. https://doi.org/10.1016/bs.pmbts.2017.04.001; PMid:28662830 PMCid:PMC5548443

117. Palei AC et al. 2012. Association between matrix metalloproteinase (MMP)-2 polymorphisms and MMP-2 levels in hypertensive disorders of pregnancy. Exp. Mol. Pathol. 92: 217-221. https://doi.org/10.1016/j.yexmp.2012.01.008; PMid:22327101

118. Eleuterio NM et al. 2015. Positive correlations between circulating adiponectin and MMP2 in preeclampsia pregnant. Pregnancy Hypertens 5: 205-208. https://doi.org/10.1016/j.preghy.2015.03.001; PMid:25943646

119. Karampas G et al. 2014. Maternal serum levels of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in pregnancies with preeclampsia and those with a small for gestational age neonate: A longitudinal study. Prenat. Diagn. 34: 726-733. https://doi.org/10.1002/pd.4337; PMid:24550181

120. Montagnana M et al. 2009. Evaluation of metalloproteinases 2 and 9 and their inhibitors in physiologic and pre-eclamptic pregnancy. J. Clin. Lab. Anal. 23: 88-92. https://doi.org/10.1002/jcla.20295; PMid:19288452 PMCid:PMC6649012

121. Castro MM, Kandasamy AD, Youssef N, Schulz R. 2011. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res. 64:551–60. https://doi.org/10.1016/j.phrs.2011.05.005; PMid:21689755

122. Castro MM, Tanus-Santos JE, Gerlach RF. 2011. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res. 64:567–72. https://doi.org/10.1016/j.phrs.2011.04.002; PMid:21514386

123. Conde-Agudelo A, Bird S, Kennedy SH, Villar J, Papageorghiou AT. 2015. First– and second-trimester tests to predict stillbirth in unselected pregnant women: a systematic review and meta-analysis. BJOG. 122(1):41–55. 32. https://doi.org/10.1111/1471-0528.13096; PMid:25236870

124. Odibo AO. 2014. Pregnancy associated-plasma protein-a (PAPP-A) and alfa-fetoprotein (AFP) associated with placental abruption. Am J Obstet Gynecol. 211(2):89–90. https://doi.org/10.1016/j.ajog.2014.03.062; PMid:24837457

125. Holin AM i dr. 2015. Skrining ranney preeklampsii v I trimestre beremennosti na osnove kombinirovannoy otsenki materinskogo syivorotochnogo platsentarnogo faktora rosta i dopplerometrii matochnyh arteriy. Akusherstvo i ginekologiya 5:42-48.

126. Bilagi A, Burke DL. 2017. Association of maternal serum PAPP-A levels, nuchal translucency and crown-rump length in first trimester with adverse pregnancy outcomes: retrospective cohort study. Prenat Diagn. 37;7:705-711. https://doi.org/10.1002/pd.5069; PMid:28514830

127. Poon LC, Maiz N, Valencia C, Plasencia W, Nicolaides KH. 2009. First-trimester maternal serum pregnancy-associated plasma protein-А and pre-eclampsia. Ultrasound Obstet Gynecol. 33(1):23–33. https://doi.org/10.1002/uog.6280; PMid:19090499

128. Schneuer F, Nassar N, Khambalia A, Tasevski V, Ashton A, Morris J et al. 2012. First trimester screening of maternal placental protein 13 for predicting preeclampsia and small for gestational age: In-house study and systematic review. Placenta 33(9): 735–740. https://doi.org/10.1016/j.placenta.2012.05.012; PMid:22748852

129. Lai J, Pinas A, Poon LC, Agathokleous M, Nicolaides KH. 2013. Maternal serum placental growth factor, pregnancy-associated plasma protein A and free β-human chorionic gonadotrophin at 30–33 weeks in the prediction of pre-eclampsia. Fetal Diagn Ther 33:164-72. https://doi.org/10.1159/000345090; PMid:23445908

130. Keikkala E, Vuorela P, Laivuori H, Romppanen J, Heinonen S, Stenman UH. 2013 Nov. First trimester hyperglycosylated human chorionic gonadotrophin in serum – a marker of early-onset preeclampsia. Placenta 34(11):1059-65. https://doi.org/10.1016/j.placenta.2013.08.006; PMid:23993394

131. Kalkunte S, Navers T, Norris W, Banerjee P, Fazleabas A, Kuhn C, Jeschke U, Sharma S. 2010. Presence of non-functional hCG in preeclampsia and rescue of normal pregnancy by recombinant hCG. Placenta 31:A126

132. Di Lorenzo G, Ceccarello M, Cecotti V, Ronfani L, Monasta L, Brumatti LV et al. 2012. First trimester maternal serum PIGF, free [beta]-hCG, PAPP-A, PP-13, uterine artery Doppler and maternal history for the prediction of preeclampsia. Placenta 33(6):495. https://doi.org/10.1016/j.placenta.2012.03.003; PMid:22459245

133. Akolekar R, Syngelaki A, Beta J, Kocylowski R, Nicolaides KH. 2009, Dec. Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia. Prenat Diagn. 29(12):1103-8. https://doi.org/10.1002/pd.2375; PMid:19777530

134. Nicolaides KH. 2006. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound / K.H. Nicolaides, R. Bindra, O.M. Turan, // Ultrasound Obstet Gynecol. 27 (1): 13-17. https://doi.org/10.1002/uog.2686; PMid:16374755

135. Chafetz I et al. 2007. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 197 (1): 35.e1-7.2. https://doi.org/10.1016/j.ajog.2007.02.025; PMid:17618748

136. Pimentel AM et al. 2013. L-arginine-nitric oxide pathway and oxidative stress in plasma and platelets of patients with preeclampsia. Hypertens. Res. 36;9:783-788. https://doi.org/10.1038/hr.2013.34; PMid:23575380

137. Khalil A et al. 2009. First trimester maternal serum placental protein 13 for the prediction of preeclampsia in women with a priori high risk. Prenat. Diagn. 29;8: 781-789. https://doi.org/10.1002/pd.2287; PMid:19418482

138. Guibourdenche J, Handschuh K, Tsatsaris V, Gerbaud P, Leguy MC, Muller F et al. 2010. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab. 95:E240–4. https://doi.org/10.1210/jc.2010-0138; PMid:20660042

139. Keikkala E, Koskinen S, Vuorela P, Laivuori H, Romppanen J, Heinonen S, Stenman UH. 2016, Nov 25. First trimester serum placental growth factor and hyperglycosylated human chorionic gonadotropin are associated with pre-eclampsia: a case control study. BMC Pregnancy Childbirth. 16(1):378. https://doi.org/10.1186/s12884-016-1169-4; PMid:27887594 PMCid:PMC5124279

140. Keikkala E, Ranta JK, Vuorela P, Leinonen R, Laivuori H, Vaisanen S et al. 2014. Serum hyperglycosylated human chorionic gonadotrophin at 14–17 weeks of gestation does not predict preeclampsia. Prenat Diagn. 34:699–705. https://doi.org/10.1002/pd.4335; PMid:24464955

141. Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S. 2013, Oct. A disintegrin and metalloproteinase-12 (ADAM12): function, roles in disease progression, and clinical implications. Biochim Biophys Acta. 1830(10):4445-55. https://doi.org/10.1016/j.bbagen.2013.05.011; PMid:23680494 PMCid:PMC3740046

142. Kuc S, Koster MP, Franx A, Schielen PC, Visser GH. 2013, May 22. Maternal characteristics, mean arterial pressure and serum markers in early prediction of preeclampsia. PLoS One. 8(5):e63546. https://doi.org/10.1371/journal.pone.0063546; PMid:23717445 PMCid:PMC3661579

143. Wortelboer EJ, Koster MP, Cuckle HS, Stoutenbeek PH, Schielen PC, Visser GH. 2010, Oct. First-trimester placental protein 13 and placental growth factor: markers for identification of women destined to develop early-onset pre-eclampsia. BJOG. 117(11):1384-9. https://doi.org/10.1111/j.1471-0528.2010.02690.x; PMid:20840693

144. Cui L, Shu C, Liu Z, Tong W, Cui M, Wei C, Tang JJ, Liu X, Hai H, Jiang J, He J, Zhang DY, Ye F, Li Y. 2018, Oct. Serum protein marker panel for predicting preeclampsia. Pregnancy Hypertens. 14:279-285. https://doi.org/10.1016/j.preghy.2018.01.009; PMid:29395656

145. Tan MY et al. 2017. Protocol for the prospective validation study: “Screening programme for pre-eclampsia” (SPREE). Ultrasound Obstet Gynecol. 50;2: 175-179. https://doi.org/10.1002/uog.17467; PMid:28295773

146. Raymond D, Peterson E. 2011. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 66(8):497–506. https://doi.org/10.1097/OGX.0b013e3182331028; PMid:22018452

147. Costa Fda S, Murthi P, Keogh R, Woodrow N. 2011, Nov. Early screening for preeclampsia. Rev Bras Ginecol Obstet. 33(11):367-75. https://doi.org/10.1590/S0100-72032011001100008; PMid:22267116

148. Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, Paech M, Said JM. 2015, Oct. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 55(5):e1-29. https://doi.org/10.1111/ajo.12399; PMid:26412014

149. Poon LC, Kametas NA, Chelemen T, Leal A, Nicolaides KH. 2010, Feb. Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. J Hum Hypertens. 24(2):104-10. https://doi.org/10.1038/jhh.2009.45; PMid:19516271

150. Lai J, Pinas A, Poon L, Agathokleous M, Nicolaides K. 2013. Maternal Serum Placental Growth Factor, Pregnancy-Associated Plasma Protein-A and Free beta-Human Chorionic Gonadotrophin at 30–33 Weeks in the Prediction of Pre-eclampsia. Fetal Diagn Ther 33(3):164–172. https://doi.org/10.1159/000345090; PMid:23445908

151. Soto E, Romero R, Kusanovic JP, Ogge G, Hussein Y, Yeo L, Hassan SS, Kim CJ, Chaiworapongsa T. 2012. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J Matern Fetal Neonatal Med. 25(5):498–507. https://doi.org/10.3109/14767058.2011.591461; PMid:21867402 PMCid:PMC3401571

152. Myers J, Kenny L, McCowan L, Chan E, Dekker G, Poston L et al. 2013. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG. 120(10):1215–1223. https://doi.org/10.1111/1471-0528.12195; PMid:23906160

153. Bolin M, Wikström A, Wiberg-Itzel E, Olsson A, Ringvall M, Sundström-Poromaa I et al. 2012. Prediction of Preeclampsia by Combining Serum Histidine-Rich Glycoprotein and Uterine Artery Doppler. Am JHypertens. 25(12):1305–1310. https://doi.org/10.1038/ajh.2012.112; PMid:22895448

154. Park HJ, Kim SH, Jung YW, Shim SS, Kim JY, Cho YK, Farina A, Zanello M, Lee KJ, Cha DH. 2014, Jan 20. Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Childbirth. 14:35. https://doi.org/10.1186/1471-2393-14-35; PMid:24444293 PMCid:PMC3944217

155. Poon LC, Syngelaki A, Akolekar R, Lai J, Nicolaides KH. 2013. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther. 33(1):16–27. https://doi.org/10.1159/000341712; PMid:22986844

156. Crovetto F, Figueras F, Triunfo S, Crispi F, Rodriguez-Sureda V, Dominguez C et al. 2015. First trimester screening for early and late preeclampsia based on maternal characteristics, biophysical parameters, and angiogenic factors. Prenat Diagn. 35(2):183–91. https://doi.org/10.1002/pd.4519; PMid:25346181

157. Baumann MU, Bersinger NA, Mohaupt MG, Raio L, Gerber S, Surbek DV. 2008, Sep. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol. 199(3):266.e1-6. https://doi.org/10.1016/j.ajog.2008.06.069; PMid:18771978

158. Kuc S, Koster MP, Franx A, Schielen PC, Visser GH. 2013, May 22. Maternal characteristics, mean arterial pressure and serum markers in early prediction of preeclampsia. PLoS One. 8(5):e63546. https://doi.org/10.1371/journal.pone.0063546; PMid:23717445 PMCid:PMC3661579

159. Gillon TE, Pels A, von Dadelszen P, MacDonell K, Magee LA. 2014. Hypertensive disorders of pregnancy: a systematic review of international clinical practice guidelines. PLoS One 9(12):e113715. https://doi.org/10.1371/journal.pone.0113715; PMid:25436639 PMCid:PMC4249974

160. Stepan H, Kuse-Föhl S, Klockenbusch W et al. 2015. Diagnosis and Treatment of Hypertensive Pregnancy Disorders. Guideline of DGGG (S1-Level, AWMF Registry No. 015/018, December 2013). Geburtshilfe Frauenheilkd. 75(9):900-914. https://doi.org/10.1055/s-0035-1557924; PMid:28435172 PMCid:PMC5396549

161. Queensland Maternity and Neonatal Clinical Guidelines Program (2010) Hypertensive disorders of pregnancy. Guideline No. MN10.13.V4-R15. Queensland health.

162. Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 39(34):3165-3241. 2018, Sep 7.

163. National Institute for Health and Clinical Excellence. PlGF-based testing to help diagnose suspected pre-eclampsia (Triage PlGF test, Elecsys immunoassay sFlt-1/PlGF ratio, DELFIA Xpress PlGF 1-2-3 test, and BRAHMS sFlt-1 Kryptor/BRAHMS PlGF plus Kryptor PE ratio. NICE diagnostics guidance (DG23). 2016.

164. Committee Opinion 638: First-Trimester Risk Assessment for Early-Onset Preeclampsia. Obstet Gynecol. 126(3):e25-7. 2015, Sep. https://doi.org/10.1097/AOG.0000000000001049; PMid:26287789

165. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. 2014, Apr. Canadian Hypertensive Disorders of Pregnancy (HDP) Working Group. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Pregnancy Hypertens. 4(2):105-45. https://doi.org/10.1016/j.preghy.2014.01.003; PMid:26104418

166. Tranquilli AL, Dekker G, Magee L, Roberts J, Sibai BM, Steyn W, Zeeman GG, Brown MA. 2014. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens. 4:97–104. https://doi.org/10.1016/j.preghy.2014.02.001; PMid:26104417

167. Rekomendatsii VOZ po profilaktike i lecheniyu preeklampsii i eklampsii. VOZ. 2014: 48.

168. Milne F, Redman C, Walker J et al. 2005. The pre-eclampsia community guideline (PRECOG): how to screen for and detect onset of pre-eclampsia in the community. BMJ. 330(7491):576-80. https://doi.org/10.1136/bmj.330.7491.576; PMid:15760998 PMCid:PMC554032