- To the issue of diagnosis of neuropsychological development of newborns and young children
 
To the issue of diagnosis of neuropsychological development of newborns and young children
	Modern Pediatrics. Ukraine. (2022). 8(128): 45-67. doi 10.15574/SP.2022.128.45
	Shveikinа V. B.1,3, Martyniuk V. Yu.2
	1SI «Institute of Pediatrics, Obstetrics and Gynecology named after academician O.M. Lukyanova of the NAMS of Ukraine», Kyiv
	2SI «Ukrainian Medical Rehabilitation Center for Children with Organic Disorders of Nervous System Ministry of Health of Ukraine», Kyiv 
	3National Children’s Specialized Hospital «OHMATDYT», Kyiv, Ukraine
	For citation: Shveikinа VB, Martyniuk VYu. (2022). To the issue of diagnosis of neuropsychological development of newborns and young children. Modern Pediatrics. Ukraine. 8(128): 45–67. doi 10.15574/SP.2022.128.45.
	Article received: Oct 07, 2022. Accepted for publication: Dec 20, 2022.
	The current problem of neonatology and child neurology is highlighted – the features of early diagnosis of neuropsychological development of newborns and young children.
	The scientific literature on the morphofunctional features of brain development was analyzed, while the main attention was paid to the first two years of a child’s life. It is emphasized that the peak activity of brain development falls on the second half of pregnancy and the first three months of postnatal life.
	New data on the development of the brain are described, namely the presence of a transitional structure – the cortical subplate. It is shown that the development of the motor and behavioral sphere of a newborn and an infant is largely mediated by the coexistence of two separate but interconnected brain structures – the transitional structure, namely the subplate and the formation of the cortical plate during this period.
	It is emphasized that two age periods are important for the diagnosis of neurodevelopmental disorders: the first is about three months after birth, when the cortical subplate in the primary motor, somatosensory, and visual cortex is eliminated, and the second is the end of the first year, when the cortical subplate is eliminated in the prefrontal and parietal temporal regions.
	It was determined that the clinical manifestations associated with the disappearance of the subplate in the primary sensory and motor areas three months after childbirth coincide with a major transition in motor behavior, namely, spontaneously generated general movements are replaced by purposeful movements, adaptive behavior is formed in response to changes in environmental factors.
	Some clinical and diagnostic features in the detection of early disorders of neuropsychological development are highlighted, taking into account the stages of brain maturation (myelination, synaptogenesis).
	Some of the most common diagnostic scales and tests are considered. The most significant motor scales in the infant period, which are used to predict the outcome, are shown. Some standardized neurological assessments are highlighted. The concept of an early intervention program for infants with a high risk of developing cerebral palsy and cognitive impairment is defined.
	No conflict of interests was declared by the authors.
	Keywords: newborn, brain, early diagnosis, scales, movement disorders, cerebral palsy.
	REFERENCES
	1. Akhbari Ziegler S, von Rhein M, Meichtry A, Wirz M, Hielkema T, Hadders-Algra M. (2020). Swiss Neonatal Network & Follow-Up Group. The Coping with and Caring for Infants with Special Needs intervention was associated with improved motor development in preterm infants. Acta Paediatr. 10: 1189-1120. https://doi.org/10.1111/apa.15619; PMid:33047325 PMCid:PMC7984220
2. Als H, Lawhon G, Duffy FH, McAnulty GB, Gibes-Grossman R, Blickman JG. (1984). Individualized developmental care for the very low-birth-weight preterm infant. Medical and neurofunctional effects. JAMA. 272 (11): 853-858. https://doi.org/10.1001/jama.272.11.853; PMid:8078162
3. Anderson PJ, Burnett A. (2017). Assessing developmental delay in early childhood – concerns with the Bayley-III scales. Clin. Neuropsychol. 31 (2): 371-381. https://doi.org/10.1080/13854046.2016.1216518; PMid:27687612
4. Annink KV, de Vries LS, Groenendaal F, Vijlbrief DC, Weeke LC, Roehr CC, Lequin M, Reiss I, Govaert P, Benders MJNL et al. (2020). The development and validation of a cerebral ultrasound scoring system for infants with hypoxic-ischaemic encephalopathy. Pediatr. Res. 87 (1): 59-66. https://doi.org/10.1038/s41390-020-0782-0; PMid:32218538 PMCid:PMC7098882
5. Azari N, Soleimani F, Vameghi R, Sajedi F, Shahshahani S, Karimi H et al. (2017). A Psychometric study of the Bayley Scales of Infant and Toddler Development in Persian Language Children. Iranian Journal of Child Neurology. 11 (1): 50-56. https://doi.org/10.22037/ijcn.v11i1.12056.
6. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513 (5): 532-541. https://doi.org/10.1002/cne.21974; PMid:19226510
7. Bax M, Goldstein M, Rosenbaum P et al. (2005). Proposed definition and classification of cerebral palsy. Journal of Developmental Medicine and Child Neurology. 47 (8): 571-576. https://doi.org/10.1017/S001216220500112X; PMid:16108461
8. Ben-Ari, Y, Spitzer NC. (2010). Phenotypic checkpoints regulate neuronal development. Trends Neurosci. 33 (11): 485-492. https://doi.org/10.1016/j.tins.2010.08.005; PMid:20864191 PMCid:PMC2963711
9. Benders MJNL, Kersbergen KJ, de Vries LS. (2014). Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin. Perinatol. 41 (1): 69-82. https://doi.org/10.1016/j.clp.2013.09.005; PMid:24524447
10. Bodkin AW, Robinson C, Perales FP. (2003). Reliability and validity of the gross motor function classification system for cerebral palsy. Pediatric Physical Therapy. 15 (4): 247-252. https://doi.org/10.1097/01.PEP.0000096384.19136.02; PMid:17057460
11. Bosanquet M, Copeland L, Ware R, Boyd R. (2013). A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 55 (5): 418-426. https://doi.org/10.1111/dmcn.12140; PMid:23574478
12. Brazelton, T. B. (1973). Neonatal Behavioral Assessment Scale. Clinics in Developmental Medicine, No. 50. London: William Heinemann Medical Books. Philadelphia: J. B. Lippincott: 66.
13. Brody BA, Kinney HC, Kloman AS, Gilles FH. (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46 (3): 283-301. https://doi.org/10.1097/00005072-198705000-00005; PMid:3559630
14. Bruggink JL, Einspieler C, Butcher PR, Van Braeckel KN, Prechtl HF, Bos AF. (2008). The quality of the early motor repertoire in preterm infants predicts minor neurologic dysfunction at school age. J Pediatr. 153 (1): 32-39. https://doi.org/10.1016/j.jpeds.2007.12.047; PMid:18571531
15. Bruggink JL, Van Braeckel KN, Bos AF. (2010). The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics. 125 (6): 1356-63. https://doi.org/10.1542/peds.2009-2117; PMid:20457678
16. Bystron I, Blakemore C, Rakic P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9 (2): 110-122. https://doi.org/10.1038/nrn2252; PMid:18209730
17. Cabrera-Martos I, Valenza MC, Valenza-Demet G, Benítez-Feliponi A, Robles-Vizcaíno C, Ruiz-Extremera A. (2016). Effects of manual therapy on treatment duration and motor development in infants with severe nonsynostotic plagiocephaly: a randomised controlled pilot study. Childs Nerv Syst. 32 (11): 2211-2217. https://doi.org/10.1007/s00381-016-3200-5; PMid:27465676
18. Campbell S K, Kolobe TH, Wright BD, Linacre JM. (2002). Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale. Dev. Med. Child. Neurol. 44 (4): 263-272. https://doi.org/10.1017/S0012162201002043; PMid:11995895
19. Campbell SK, Kolobe TH, Osten ET, Lenke M, Girolami GL. (1995). Construct validity of the test of infant motor performance. Phys. Ther. 75 (7): 585-596. https://doi.org/10.1093/ptj/75.7.585; PMid:7604077
20. Celnik P, Hummel F, Cohen LG. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation. 88 (11): 1369-1369. https://doi.org/10.1016/j.apmr.2007.08.001; PMid:17964875
21. Chamudot R, Parush S, Rigbi A, Horovitz R, Gross-Tsur V. (2018). Effectiveness of modified constraint-induced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: A randomized controlled trial. Am. J. Occup. Ther. 72 (6): 7206205010p1-7206205010p9. https://doi.org/10.5014/ajot.2018.025981; PMid:30760393
22. Cioni G, Ferrari F, Einspieler C, Paolicelli PB, Barbani MT, Prechtl HF. (1997). Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr. 130 (5): 704-711. https://doi.org/10.1016/S0022-3476(97)80010-8; PMid:9152277
23. Darrah J, Bartlett D, Maguire TO, Avison WR, Lacaze-Masmonteil T. (2014). Have infant gross motor abilities changed in 20 years? A re-evaluation of the Alberta Infant Motor Scale normative values. Dev Med Child Neurol. 56 (9): 877-881. https://doi.org/10.1111/dmcn.12452; PMid:24684556 PMCid:PMC4293464
24. Delobel-Ayoub M, Saemundsen E, Gissler M, Ego A, Moilanen I, Ebeling H, Rafnsson V, Klapouszczak D, Thorsteinsson E, Arnaldsdóttir KM et al. (2020). Prevalence of Autism Spectrum Disorder in 7-9-Year-Old Children in Denmark, Finland, France and Iceland: A Population-Based Registries Approach Within the ASDEU Project. J. Autism. Dev. Disord. 50 (3): 949-959. https://doi.org/10.1007/s10803-019-04328-y; PMid:31813107
25. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. (2013). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience. 276: 48-71. https://doi.org/10.1016/j.neuroscience.2013.12.044; PMid:24378955
26. Dubowitz L, Dubowitz V, Mercuri E. (1999). The Neurological Assessment of the Preterm and Full-term Infant. 2nd ed. London: 167.
27. Dubowitz L, Mercuri E, Dubowitz V. (1998). An optimality score for the neurologic examination of the term newborn. J Pediatr. 133 (3): 406-416. https://doi.org/10.1016/S0022-3476(98)70279-3; PMid:9738726
28. Ecker C. (2017). The neuroanatomy of autism spectrum disorder. An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism. 21 (1): 18-28. https://doi.org/10.1177/1362361315627136; PMid:26975670
29. Einspieler C, Prechtl HFR, Ferrari F et al. (1997). The qualitative assessment of general movements in preterm, term and young infants-review of the methodology. Early Human Development. 50 (1): 47-60. https://doi.org/10.1016/S0378-3782(97)00092-3; PMid:9467693
30. Eliasson AC, Nordstrand L, Ek L, Lennartsson F, Sjöstrand L, Tedroff K, Krumlinde-Sundholm L. (2018). The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design. Res. Dev. Disabil. 72: 191-201. https://doi.org/10.1016/j.ridd.2017.11.006; PMid:29175749
31. El-Khoury N, Braun A, Hu F et al. (2006). Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 59 (5): 673-679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c; PMid:16627880
32. Eyre J.A. (2007). Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 31 (8): 1136-1149. https://doi.org/10.1016/j.neubiorev.2007.05.011; PMid:18053875
33. Ferrari F, Cioni G, Einspieler C, Roversi MF, Bos AF, Paolicelli PB et al. (2002). Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med. 156 (5): 460-467. https://doi.org/10.1001/archpedi.156.5.460; PMid:11980551
34. Ferrari F, Cioni G, Prechtl HFR. (1990). Qualitative changes of general movements in preterm infants with brain lesions. Early Hum Dev. 23 (3): 193-231. https://doi.org/10.1016/0378-3782(90)90013-9; PMid:2253580
35. Fleuren KMW, Smit LS, Stijnen T, Hartman A. (2007). New reference values for the Alberta Infant Motor Scale need to be established. Acta Paediatr. 96 (3): 424-427. https://doi.org/10.1111/j.1651-2227.2007.00111.x; PMid:17407470
36. Franki I, Mailleux L, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. (2020). The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part A, Structural imaging. Res. Dev. Disabil. 100: 103606. https://doi.org/10.1016/j.ridd.2020.103606; PMid:32192951
37. Fuentefria R. do N, Silveira RC, Procianoy RS. (2017). Motor development of preterm infants assessed by the Alberta Infant Motor Scale: systematic review article. J Pediatr (Rio J). 93 (4): 328-342. https://doi.org/10.1016/j.jped.2017.03.003; PMid:28506665
38. Gooding JS, Cooper LG, Blaine AI, Franck LS, Howse JL, Berns SD. (2011). Family support and family-centered care in the neonatal intensive care unit: origins, advances, impact. Semin. Perinatol. 35 (1): 20-28. https://doi.org/10.1053/j.semperi.2010.10.004; PMid:21255703
39. Gotz M, Huttner WB. (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 6 (10): 777-788. https://doi.org/10.1038/nrm1739; PMid:16314867
40. Hadders-Algra M, Heineman KR. (2021). The Infant Motor Profile. Routledge. Abingdon: 174. https://doi.org/10.4324/9780429341915
41. Hadders-Algra M. (2002). Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Dev. Med. Child Neurol. 44 (8): 561-571. https://doi.org/10.1017/S0012162201002560; PMid:12206624
42. Hadders-Algra M. (2018). Early human brain development: Starring the subplate. Neurosci. Biobehav. Rev. 92: 276-290. https://doi.org/10.1016/j.neubiorev.2018.06.017; PMid:29935204
43. Hadders-Algra M. (2018). Early human motor development: From variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 90: 411-427. https://doi.org/10.1016/j.neubiorev.2018.05.009; PMid:29752957
44. Hadders-Algra M. (2018). Neural substrate and clinical significance of general move-ments: an update. Dev. Med. Child. Neurol. 60: 39-46. https://doi.org/10.1111/dmcn.13540; PMid:28832987
45. Hadders-Algra M. (2021). Early Diagnostics and Early Intervention in Neurodevelopmental Disorders – Age-Dependent Challenges and Opportunities. J Clin Med. 10 (4): 861. https://doi.org/10.3390/jcm10040861; PMid:33669727 PMCid:PMC7922888
46. Haynes RL, Borenstein NS, Desilva TM, Folkert RD, Liu LG, Volpe JJ, Kinney HC. (2005). Axonal development in the cerebral white matter of the human fetus and infant. J. Comp. Neurol. 484 (2): 156-167. https://doi.org/10.1002/cne.20453; PMid:15736232
47. Heineman KR, Bos AF, Hadders-Algra M. (2008). The Infant Motor Profile: A standardized and qualitative method to assess motor behaviour in infancy. Dev. Med. Child Neurol. 50 (4): 275-282. https://doi.org/10.1111/j.1469-8749.2008.02035.x; PMid:18279412
48. Heineman KR, Schendelaar P, Van den Heuvel ER, Hadders-Algra M. (2018). Motor development in infancy is related to cognitive function at 4 years of age. Dev. Med. Child Neurol. 60 (11): 1149-1155. https://doi.org/10.1111/dmcn.13761; PMid:29633244
49. Helbruge Theodore. Development of babies. (2006). Trans. from the German Marta Stasiuk. Lviv: Astrolabia: 208.
50. Hielkema T, Blauw-Hospers CH, Dirks T, Drijver-Messelink M, Bos AF, Hadders-Algra M. (2011). Does physiotherapeutic intervention affect motor outcome in high-risk infants? An approach combining a randomized controlled trial and process evaluation. Dev. Med. Child Neurol. 53 (3): e8-e15. https://doi.org/10.1111/j.1469-8749.2010.03876.x; PMid:21291457
51. Hielkema T, Boxum AG, Hamer EG, La Bastide-Van Gemert S, Dirks T, Reinders-Messelink HA, Maathuis CGB, Verheijden J, Geertzen JHB, Hadders-Algra M. (2020). LEARN2MOVE 0-2 years, a randomized early intervention trial for infants at very high risk of cerebral palsy: family outcome and infant's functional outcome. Disabil. Rehabil. 42 (26): 3762-3770. https://doi.org/10.1080/09638288.2019.1610509; PMid:31141410
52. Hoerder-Suabedissen A, Molnár Z. (2015). Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16 (3): 133-146. https://doi.org/10.1038/nrn3915; PMid:25697157
53. Holland D, Chang L, Ernst TM, Curran M, Buchthal SD, Alicata D, Skranes J, Johansen H, Hernandez A, Yamakawa R, Kuperman JM, Dale AM. (2014). Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol. 71 (10): 1266-1274. https://doi.org/10.1001/jamaneurol.2014.1638; PMid:25111045 PMCid:PMC4940157
54. International Classification of Functioning, Disability and Health. (2001). Geneva: WHO: 256. URL: http://moz.gov.ua/uploads/1/5262-dn_20180523_981_dod_1.pdf.
55. International Classification of Functioning, Disability and Health of children and youth. (2007). Geneva: WHO: 366. URL: http://moz.gov.ua/uploads/1/5263-dn_20180523_981_dod_2.pdf.
56. Judaš M, Sedmak G, Kostović I. (2013). The significance of the subplate for evolution and developmental plasticity of the human brain. Front. Hum. Neurosci. 7: 423. https://doi.org/10.3389/fnhum.2013.00423; PMid:23935575 PMCid:PMC3731572
57. Kennedy E, Majnemer A, Farmer J-P, Barr RG, Platt RW. (2009). Motor development of infants with positional plagiocephaly. Phys Occup Ther Pediatr. 29 (3): 222-235. https://doi.org/10.1080/01942630903011016; PMid:19842852
58. Kinney HC, Brody BA, Kloman AS, Gilles FH. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47 (3): 217-234. https://doi.org/10.1097/00005072-198805000-00003; PMid:3367155
59. Kirilova LG, Martynenko YaA. (2015). Modern aspects of the pathogenesis of brain damage in extremely low birth weight infants. Perinatologiya i pediatriya. 4(64): 64-68. URL: http://nbuv.gov.ua/UJRN/perynatology_2015_4_14. https://doi.org/10.15574/PP.2015.64.64
60. Kostović I, Jovanov-Milosević N. (2006). The development of cerebral connections during the first 20-45 weeks' gestation. Semin. Fetal Neonatal. Med. 11 (6): 415-422. https://doi.org/10.1016/j.siny.2006.07.001; PMid:16962836
61. Kostović I, Kostović-Srzentić M, Benjak V, Jovanov-Milošević N, Radoš M. (2014). Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front. Neurol. 5: 139. https://doi.org/10.3389/fneur.2014.00139; PMid:25120530 PMCid:PMC4114264
62. Kostović I, Sedmak G, Judaš M. (2019). Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage. 188: 743-773. https://doi.org/10.1016/j.neuroimage.2018.12.043; PMid:30594683
63. Kostović I, Sedmak G, Vukšić M, Judaš M. (2015). The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci. Ther. 21 (2): 74-82. https://doi.org/10.1111/cns.12333; PMid:25312583 PMCid:PMC6495198
64. Kwon SH, Vasung L, Ment LR, Huppi PS. (2014). The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin. Perinatol. 41 (1): 257-283. https://doi.org/10.1016/j.clp.2013.10.003; PMid:24524459
65. Lacey J, Rudge S, Rieger I, Osborn DA. (2004). Assessment of neurological status in preterm infants in neonatal intensive care and prediction of cerebral palsy. Aust J Physiother. 50 (3): 137-44. https://doi.org/10.1016/S0004-9514(14)60151-3; PMid:15482244
66. Lai DC, Tseng YC, Guo HR. (2013). Trends in the prevalence of childhood disability: analysis of data from the national disability registry of Taiwan, 2000-2011. Res. Dev. Disabil. 34 (11): 3766-3772. https://doi.org/10.1016/j.ridd.2013.08.001; PMid:24021391
67. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 40 (3): 1044-1055. https://doi.org/10.1016/j.neuroimage.2007.12.053; PMid:18295509
68. Levene MI, Chervenak FA. (2009). Fetal and Neonatal Neurology and Neurosurgery. Elsevier Health Sciences: 921.
69. Lossi L, Merighi A. (2003). In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol. 69 (5): 287-312. https://doi.org/10.1016/S0301-0082(03)00051-0; PMid:12787572
70. Lowe JR, Erickson SJ, Schrader R, Duncan AF. (2012). Comparison of the Bayley II Mental Developmental Index and the Bayley III Cognitive Scale: are we measuring the same thing? Acta Paediatr. 101 (2): е55-58. https://doi.org/10.1111/j.1651-2227.2011.02517.x; PMid:22054168 PMCid:PMC3560971
71. Lui JH, Hansen DV, Kriegstein AR. (2011). Development and evolution of the human neocortex. Cell. 146 (1): 18-36. https://doi.org/10.1016/j.cell.2011.06.030; PMid:21729779 PMCid:PMC3610574
72. Luttikhuizen Dos Santos ES, de Kieviet JF, Konigs M, van Elburg RM, Oosterlaan J. (2013). Predictive value of the Bayley scales of Infant development on development of very preterm/very low birth weight children: a meta-analysis. Early Hum Dev. 89 (7): 487-96. https://doi.org/10.1016/j.earlhumdev.2013.03.008; PMid:23597678
73. Mailleux L, Franki I, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. (2020). The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part B diffusion imaging and tractography. Res. Dev. Disabil. 97: 103569. https://doi.org/10.1016/j.ridd.2019.103569; PMid:31901671
74. Martinez-Biarge M, Groenendaal F, Kersbergen KJ, Benders MJNL, Foti F, Cowan FM, de Vries LS. (2016). MRI based preterm white matter injury classification: The importance of sequential imaging in determining severity of injury. PLoS One. 11 (6): e0156245. https://doi.org/10.1371/journal.pone.0156245; PMid:27257863 PMCid:PMC4892507
75. Martyniuk VYu. (2016). Basics of social pediatrics: teaching-method textbook: in 2 volumes. Kyiv: FOP Veres OI. 1: 479.
76. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. (2011). Prevalence of intellectual disability: а meta-analysis of population-based studies. Res. Dev. Disabil. 32 (2): 419-436. https://doi.org/10.1016/j.ridd.2010.12.018; PMid:21236634
77. McGuire DO, Tian LH, Yeargin-Allsopp M, Dowling NF, Christensen DL. (2019). Prevalence of cerebral palsy, intellectual disability, hearing loss, and blindness, National Health Interview Survey, 2009-2016. Disabil. Health J. 12 (3): 443-451. https://doi.org/10.1016/j.dhjo.2019.01.005; PMid:30713095 PMCid:PMC7605150
78. Mercuri E, Guzzetta A, Laroche S, Ricci D, Van Haastert I, Simpson A et al. (2003). Neurologic examination of preterm infants at term age: comparison with term infants. J Pediatr. 142 (6): 647-655. https://doi.org/10.1067/mpd.2003.215; PMid:12838193
79. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD. (2011). Spontaneous electrical activity in the human fetal cortex in vitro. J. Neurosci. 31 (7): 2391-2398. https://doi.org/10.1523/JNEUROSCI.3886-10.2011; PMid:21325506 PMCid:PMC3564513
80. Morgan C, Novak I, Dale RC, Guzzetta A, Badawi N. (2016). Single blind randomised controlled trial of GAME (Goals-Activity – Motor Enrichment) in infants at high risk of cerebral palsy. Res. Dev. Disabil. 55: 256-267. https://doi.org/10.1016/j.ridd.2016.04.005; PMid:27164480
81. Morris C, Bartlett D. (2004). Gross Motor Function Classification System: impact and utility. Developmental Medicine and Child Neurology. 46 (1): 60-65. https://doi.org/10.1017/S0012162204000118; PMid:14974650
82. Mrzljak L, Uylings HB, Kostović I, van Eden CG. (1992). Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J. Comp. Neurol. 316 (4): 485-496. https://doi.org/10.1002/cne.903160408; PMid:1577996
83. O'Brien K, Bracht M, Robson K, Ye XY, Mirea L, Cruz M, Ng E, Monterrosa L, Soraisham A, Alvaro R et al. (2015). Evaluation of the Family Integrated Care model of neonatal intensive care: а cluster randomized controlled trial in Canada and Australia. BMC Pediatr. 15: 210. https://doi.org/10.1186/s12887-015-0527-0; PMid:26671340 PMCid:PMC4681024
84. Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha, Sigman M et al. (2010). A prospective study of the emergence of early behavioral signs of autism. J. Am. Acad. Child Adolesc. Psychiatry. 49 (3): 256-266. PMCID: PMC2923050. https://doi.org/10.1016/j.jaac.2009.11.009
85. Palisano RJ, Rosenbaum PD, Bartlett D, Livingston MH. (2008). Content validity of the expanded and revised Gross Motor Function Classification System Dev. Med. Child. Neurol. 50 (10): 744-750. https://doi.org/10.1111/j.1469-8749.2008.03089.x; PMid:18834387
86. Perlman JM. (2008). Neurology: Neonatology Questions and Controversies. Saunders: Elsevier: 288.
87. Peyton C, Schreiber MD, Msall ME. (2018). The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age. Dev. Med. Child Neurol. 60 (12): 1239-1243. https://doi.org/10.1111/dmcn.13736; PMid:29532917
88. Piper M, Darrah J. (2021). Motor Assessment of the Developing Infant. E-Book: Alberta Infant Motor Scale (AIMS): 288. https://doi.org/10.3389/fneur.2022.949720; PMid:35968314 PMCid:PMC9366671
89. Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ. (1992). Construction and validation of the Alberta Infant Motor Scale (AIMS). Can J Public Health. 83 (2): S46-50. URL: https://pubmed.ncbi.nlm.nih.gov/1468050/.
90. Prechtl H. (1990). Qualitative changes of spontaneous movements in fetus and preterm infants are the marker of neurological dyssfuction. Early Human Development. 23 (3): 151-158. https://doi.org/10.1016/0378-3782(90)90011-7; PMid:2253578
91. Prechtl HF, Hopkins B. (1986). Developmental transformations of spontaneous movements in early infancy. Early Hum. Dev. 14 (3-4): 233-238. https://doi.org/10.1016/0378-3782(86)90184-2; PMid:3803269
92. Prechtl HF. (2001). General movement assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Dev. Med. Child. Neurol. 43 (12): 836-842. https://doi.org/10.1017/S0012162201001529; PMid:11769272
93. Prechtl HFR, Beintema DJ. (1964). The Neurological Examination of the Full-Term Newborn Infant (Little Club Clinics Development Medicine Series, No. 12). Heinemann Medical. London: 76.
94. Prechtl HFR, Einspieler C, Cioni G et al. (1997). An early marker for neurological deficits after perinatal brain lesions. Lancet. 349 (9062): 1361-1363. https://doi.org/10.1016/S0140-6736(96)10182-3; PMid:9149699
95. Prechtl HFR. (1998). Early prediction of later neurological defecits. Longitudinal studies in children at risk: Satellite Meeting of the 8-th International Congress in Ljubljana. Vienna: 5-6.
96. Procianoy RS, Corso AL, Longo MG, Vedolin L, Silveira RC. (2019). Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy: magnetic resonance imaging findings and neurological outcomes in a Brazilian cohort. J Matern Fetal Neonatal Med. 32 (16): 2727-2734. https://doi.org/10.1080/14767058.2018.1448773; PMid:29504433
97. Rakic P, Sidman RL. (1970). Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J. Comp. Neurol. 139 (4): 473-500. https://doi.org/10.1002/cne.901390407; PMid:4195699
98. Ranjitkar S, Kvestad I, Strand TA, Ulak M, Shrestha M, Chandyo RK, Hysing M. (2018). Acceptability and reliability of the Bayley Scales of Infant and Toddler Development-III among children in Bhaktapur, Nepal. Frontiers in Psychology. 9: 1265. https://doi.org/10.3389/fpsyg.2018.01265; PMid:30087639 PMCid:PMC6066572
99. Richards JE, Xie W. (2015). Brains for all the ages: structural neurodevelopment in infants and children from a life-span perspective. Adv. Child Dev. Behav. 48: 1-52. https://doi.org/10.1016/bs.acdb.2014.11.001; PMid:25735940
100. Rizzi R, Menici V, Cioni ML, Cecchi A, Barzacchi V, Beani E, Giampietri M, Cioni G, Sgandurra G, Clinical CareToy-R Consortium. (2021). Concurrent and predictive validity of the infant motor profile in infants at risk of neurodevelopmental disorders. BMC Pediatr. 21 (1): 68. https://doi.org/10.1186/s12887-021-02522-5; PMid:33549070 PMCid:PMC7866878
101. Romeo DM, Ricci D, Brogna C, Mercuri E. (2016). Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: а critical review of the literature. Dev. Med. Child Neurol. 58 (3): 240-245. https://doi.org/10.1111/dmcn.12876; PMid:26306473
102. Saccani R, Valentini NC, Pereira KRG. (2016). New Brazilian developmental curves and reference values for the Alberta infant motor scale. Infant Behav Dev. 45 (Pt A): 38-46. https://doi.org/10.1016/j.infbeh.2016.09.002; PMid:27636655
103. Sato W, Uono S. (2019). The atypical social brain network in autism: аdvances in structural and functional MRI studies. Curr. Opin. Neurol. 32 (4): 617-621. https://doi.org/10.1097/WCO.0000000000000713; PMid:31135458
104. SCPE. (2018). Scientific report 1998 – 2018. Surveillance of Cerebral Palsy in Europe. URL: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/SCPE%20Scientific%20report%201998-2018.pdf.
105. Sellier E, McIntyre S, Smithers-Sheedy H, Platt MJ, SCPE and ACPR Groups. (2020). European and Australian Cerebral Palsy Surveillance Networks Working Together for Collaborative Research. Neuropediatrics. 51 (2): 105-112. https://doi.org/10.1055/s-0039-3402003; PMid:31910452
106. Sgandurra G, Bartalena L, Cecchi F, Cioni G, Giampietri M, Greisen G, Herskind A, Inguaggiato E, Lorentzen J, Nielsen JB et al. (2016). A pilot study on early home-based intervention through an intelligent baby gym (CareToy) in preterm infants. Res. Dev. Disabil. 53-54: 32-42. https://doi.org/10.1016/j.ridd.2016.01.013; PMid:26851385
107. Skiold B, Eriksson C, Eliasson AC, Aden U, Vollmer B. (2013). General movements and magnetic resonance imaging in the prediction of neuromotor outcome in children born extremely preterm. Early Hum Dev. 89 (7): 467-472. https://doi.org/10.1016/j.earlhumdev.2013.03.014; PMid:23623716
108. Spittle AJ, Boyd RN, Inder TE, Doyle LW. (2009). Predicting motor development in very preterm infants at 12 months' corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 123 (2): 512517. https://doi.org/10.1542/peds.2008-0590; PMid:19171616
109. Syrengelas D, Kalampoki V, Kleisiouni P, Konstantinou D, Siahanidou T. (2014). Gross motor development in full-term Greek infants assessed by the Alberta Infant Motor Scale: reference values and socioeconomic impact. Early Hum Dev. 90 (7): 353-357. https://doi.org/10.1016/j.earlhumdev.2014.04.011; PMid:24796209
110. Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WK, Murad S, Omar RZ, Robertson NJ. (2010). Cerebral magnetic resonance biomarkers in neonatal encephalopathy: а meta-analysis. Pediatrics. 125 (2): e382-e395. https://doi.org/10.1542/peds.2009-1046; PMid:20083516
111. Trivedi R, Gupta RK, Husain N, Rathore RK, Saksena S, Srivastava S, Malik GK, Das V, Pradhan M, Sarma MK, Pandey CM, Narayana PA. (2009). Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. Neuroradiology. 51 (9): 567-576. https://doi.org/10.1007/s00234-009-0533-8; PMid:19421746
112. Tudella E, Pereira K, Basso RP, Savelsbergh GJP. (2011). Description of the motor development of 3-12 month old infants with Down syndrome: the influence of the postural body position. Res Dev Disabil. 32 (5): 1514-1520. https://doi.org/10.1016/j.ridd.2011.01.046; PMid:21367575
113. Uusitalo K, Haataja L, Nyman A et al. (2021). Hammersmith Infant Neurological Examination and long-term cognitive outcome in children born very preterm Dev. Med. Child. Neurol. 63 (8): 947-953. https://doi.org/10.1111/dmcn.14873; PMid:33834473
114. Uzark K, Smith C, Donohue J, Yu S, Romano JC. (2017). Infant Motor Skills After a Cardiac Operation: The Need for Developmental Monitoring and Care. Ann Thorac Surg. 104 (2): 681-686. https://doi.org/10.1016/j.athoracsur.2016.12.032; PMid:28347538
115. Van Schie PE, Becher JG, Dallmeijer AJ, Barkhof F, Weissenbruch MM, Vermeulen RJ. (2007). Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy. Neuropediatrics. 38 (2): 71-77. https://doi.org/10.1055/s-2007-984449; PMid:17712734
116. Van't Hooft J, van der Lee JH, Opmeer BC, Aarnoudse-Moens CS, Leenders AG, Mol BW, de Haan TR. (2015). Predicting developmental outcomes in premature infants by term equivalent MRI: systematic review and meta-analysis. Syst. Rev. 4: 71. https://doi.org/10.1186/s13643-015-0058-7; PMid:25982565 PMCid:PMC4438620
117. Venkata SKRG, Pournami F, Prabhakar J, Nandakumar A, Jain N. (2020). Disability prediction by early Hammersmith Neonatal Neurological Examination: A diagnostic study. J. Child Neurol. 35 (11): 731-736. https://doi.org/10.1177/0883073820930487; PMid:32516057
118. Verkhratsky A, Butt A. (2007). Glial neurobiology: А textbook. John Wiley & Sons Ltd. England: 230. https://doi.org/10.1002/9780470517796
119. Volpe JJ. (2008). Neurology of the newborn. 5-th: Saunders Elsevier: 1194.
120. Volpe JJ. (2009). Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol. 24 (9): 1085-1104. https://doi.org/10.1177/0883073809338067; PMid:19745085 PMCid:PMC2799249
121. Volpe JJ. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8 (1): 110-124. https://doi.org/10.1016/S1474-4422(08)70294-1; PMid:19081519
122. Wang LY, Wang YL, Wang ST, Huang CC. (2013). Using the Alberta Infant Motor Scale to early identify very low-birth-weight infants with cystic periventricular leukomalacia. Brain Dev. 35 (1): 32-37. https://doi.org/10.1016/j.braindev.2011.08.012; PMid:21959127
123. Wu YC, Heineman KR, la Bastide-van Gemert S, Kuiper D, Drenth Olivares M, Hadders-Algra M. (2020). Motor behaviour in infancy is associated with cognitive, neurological and behavioural function in 9-year-old children born to parents with reduced fertility. Dev. Med. Child Neurol. 62 (9): 1089-1095. https://doi.org/10.1111/dmcn.14520; PMid:32222973 PMCid:PMC7496844
124. Yakovlev PL, Lecours AR. (1967). The myelogenetic cycles of regional maturation of the brain. In Regional Development of the Brain in Early Life. Oxford: Blackwell: 3-70.
125. Yap PT, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D. (2011). Development trends of white matter connectivity in the first years of life. PLoS One 6 (9): е24678. https://doi.org/10.1371/journal.pone.0024678; PMid:21966364 PMCid:PMC3179462
126. Yevtushenko SK, Yanovskaya NV, Sukhonosova OYu. (2016). Neurology of early childhood. Kyiv: ID Zaslavsky AYu: 288. URL: http://www.mif-ua.com/book-shop/book-34205.html.
127. Yue A, Jiang Q, Wang B, Abbey C, Medina A, Shi Y, & Rozelle, S. (2019). Concurrent validity of the Ages and Stages Questionnaire and the Bayley Scales of Infant Development III in China. PLoS One. 14 (9): e0221675. https://doi.org/10.1371/journal.pone.0221675; PMid:31487302 PMCid:PMC6728026
128. Znamenska TK, Nikulina LI, Rudenko NG, Vorobyova OV. (2017). Analysis of the work of perinatal centers in early childhood care in Ukraine. Neonatology, surgery and perinatal medicine. T.VII: 2 (24): 5-11. https://doi.org/10.24061/2413-4260.VII.2.24.2017.1
      
 
 
 
 
 
 