• Diagnostic algorithm and medical support of patients with Wiskott—Aldrich syndrome 
en To content

Diagnostic algorithm and medical support of patients with Wiskott—Aldrich syndrome 

PERINATOLOGIYA I PEDIATRIYA.2015.3(63):66-70; doi 10.15574/PP.2015.63.66 
 

Diagnostic algorithm and medical support of patients with Wiskott—Aldrich syndrome 
 

Kostyuchenko L. V.

West Ukrainian specialized children's medical сenter, Lviv 
 

Wiskott—Aldrich syndrome (WAS) is a X-linked primary immunodeficiency characterized by multiple defects in hematopoietic cells. Severity of clinical manifestations in such patients correlates with types of mutations, degree of WAS-protein expression in the blood cells and determines the choice of therapy. The article contains the results of long-term follow-up after children with WAS. Molecular-genetic confirmation of the diagnosis was obtained in all of the cases, at that two new types of WAS-gene mutations found in 4 of the families. In four patients the phenomenon of natural chimerizm of WAS protein was detected, which is due to the presence of reverse mutations of WAS-gene. One of the patients died from complications after stem cell transplantation. The others receive conservative treatment. Currently available diagnostic and therapeutic options for WAS patients in Ukraine do not meet the international standards. 
 

Key words: Wiskott—Aldrich syndrome, primary immunodeficiency, children, stem cell transplantation, gene therapy. 
 

REFERENCES

1. Beel K, Cotter MM, Blatny J et al. 2009, Jan. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol. 144 (1): 120—126.

2. Astrakhan A, Ochs HD, Rawlings DJ. 2009. Wiskott—Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J Immunol. 182(12): 7370—7380.

3. Bouma G, Burns S, Thrasher A. 2007. Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. J Blood. 110(13): 4278—4284.

4. Imai K, Morio T, Zhu Yi et al. 2004. Clinical course of patients with WASP gene mutations. Blood. 103(2): 456—464.

5. Trifari S, Sitia G, Aiuti A et al. 2006. Defective Th1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott-Aldrich syndrome patients. J Immunol. 177(10): 7451—7461.

6. Pulecio J, Tagliani E, Scholer A et al. 2008. Expression of Wiskott—Aldrich syndrome protein in dendritic cells regulates synapse formation and activation of naive CD8+ T cells. J Immunol. 181(2): 1135—1142.

7. Braun CJ, Boztug K, Paruzynski A et al. 2014. Gene therapy for Wiskott—Aldrich syndrome — long-term efficacy and genotoxicity. Sci Transl Med. 6(227): 227—233. http://dx.doi.org/10.1126/scitranslmed.3007280; PMid:24622513

8. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD et al. 2008. Long-term outcome following hematopoietic stem cell transplantation in Wiskott—Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and the European Group for Blood and Marrow Transplantation. Blood. 111(1): 439—445. http://dx.doi.org/10.1182/blood-2007-03-076679

9. Antoine C, Muller S, Cant A et al. 2003. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 361(9357): 553—560. http://dx.doi.org/10.1016/s0140-6736(03)12513-5

10. Ochs HD, Thrasher AJ. 2006. The Wiskott—Aldrich syndrome. J Allergy Clin Immunol. 117(4): 725—738.

11. Pai S-Y, Notarangelo LD. 2010. Hematopoietic Cell Transplantation for Wiskott—Aldrich Syndrome: Advances in Biology and Future Directions for Treatment. Immunol Allergy Clin North Am. 30(2): 179—194. http://dx.doi.org/10.1016/j.iac.2010.02.001; PMid:20493395 PMCid:PMC2930258

12. Friedrich W, Schutz C, Schulz A et al. 2009. Results and long-term outcome in 39 patients with Wiskott-Aldrich syndrome transplanted from HLA-matched and -mismatched donors. Immunol Res. 44(1—3): 18—24.

13. Boztug K, Schmidt M, Schwarzer A et al. 2010. Stem-cell gene therapy for the Wiskott—Aldrich syndrome. N Engl J Med. 363(20): 1918—1927.

14. Maillard MH, Cotta-de-Almeida V, Takeshima F et al. 2007. The Wiskott—Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med. 204(2): 381—391.

15. Kang HJ, Shin HY, Ko SH et al. 2008. Unrelated bone marrow transplantation with a reduced toxicity myeloablative conditioning regimen in Wiskott—Aldrich syndrome. J Korean Med Sci. 23(1): 146—148. http://dx.doi.org/10.3346/jkms.2008.23.1.146; PMid:18303217 PMCid:PMC2526489

16. Wiskott—Aldrich syndrome and X-linked thrombocytopenia. http://bioinf.uta.fi/xml/idr/ff/FF71.xml?style=MB (10.09.2011).

17. Calle Y, Chou HC, Thrasher AJ et al. 2004. Wiskott—Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J Pathol. 204(4): 460—469.

18. Meyer-Bahlburg A, Becker-Herman S, Humblet-Baron S et al. 2008. Wiskott—Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood. 112(10): 4158—4169.

19. Humblet-Baron S, Sather B, Anover S et al. 2007. Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J Clin Invest. 117(2): 407—418.

20. Ochs HD, Filipovich AH, Veys P et al. 2008. Wiskott—Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 15; Suppl 1: 84—90.