- Development of the immune response in рneumococcal pneumoniae (part 2)
Development of the immune response in рneumococcal pneumoniae (part 2)
SOVREMENNAYA PEDIATRIYA.2016.5(77):54-61; doi10.15574/SP.2016.77.54
Development of the immune response in рneumococcal pneumoniae (part 2)
Abaturov A. E., Agafonova Е. А., Nikulina A. A.
SI «Dnepropetrovsk Medical Academy, Ministry of Health of Ukraine», Dnepr, Ukraine
The article studies the role of various cytokines (IL-1β, IL-6, IL-8, IL-10, IL-17, TNF-α, interferon type I and II) in the development of inflammation in pneumococcal pneumoniae. The characteristic families of interleukins, chemokines, interferons, involved in the formation of an adequate inflammation and non-specific immune response directed at elimination Streptococcus pneumonia. Shows the active part of the interferon system in antimicrobial protection (in recognition, processing of antigen presentation, intracellular signal transduction, activation of transcription factors, cytokine production).
Key words: pneumococcal pneumoniae, immune response, cytokines, interferons.
REFERENCES
1. Abaturov AE, Volosovets AP, Yulish EI. 2012. Induktsiya molekulyarnyih mehanizmov nespetsificheskoy zaschityi respiratornogo trakta. Kiev, Privatna drukarnya FO-II Storozhuk O.V.: 240.
2. Abaturov AE. 2007. Sovremennyie predstavleniya o gomeostaze zheleza u cheloveka. Sovremennaya pediatriya. 1(14): 105—112.
3. Abaturov AE, Gerasimenko ON, Vyisochina IL, Zavgorodnyaya NYu. 2011. Defenzinyi i defenziv-zavisimyie zabolevaniya. Odessa, Izdatelstvo VMV: 266.
4. Pido-Lopez J, Kwok WW, Mitchell TJ et al. 2011. Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue. PLoS Pathog. 7(12): e1002396. http://dx.doi.org/10.1371/journal.ppat.1002396.
5. Arend WP, Palmer G, Gabay C. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223: 20—38. http://dx.doi.org/10.1111/j.1600-065X.2008.00624.x.
6. Blouin CM, Lamaze С. 2013, Sep 3. Interferon gamma receptor: the beginning of the journey. Front Immunol. 4: 267. doi: 10.3389/fimmu. 2013.00267.
7. Brenner D, Blaser H, Mak TW. 2015. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 15(6): 362—74. http://dx.doi.org/10.1038/nri3834.
8. Cayrol C. Girard J. P. 2009, Jun 2. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 106(22): 9021—6. http://dx.doi.org/10.1073/pnas.0812690106.
9. Singh R, Singh S, Briles DE et al. 2012, Feb 1. CCL5-independent helper T lymphocyte responses to immuno-dominant pneumococcal surface protein A epitopes. Vaccine. 30(6): 1181-90. http://dx.doi.org/10.1016/j.vaccine.2011.12.020.
10. Cherayil BJ. 2015. Pathophysiology of Iron Homeostasis during Inflammatory States. J Pediatr. 167; Suppl 4: 15—9. doi: 10.1016/j.jpeds.2015.07.015.
11. Cole JN, Nizet V. 2016. Bacterial Evasion of Host Antimicrobial Peptide Defenses. Microbiol Spectr. 4(1). doi: 10.1128/microbiolspec.VMBF-0006-2015.
12. Couper KN, Blount DG, Riley EM. 2008, May 1. IL-10: the master regulator of immunity to infection. J Immunol. 180(9): 5771—7. http://dx.doi.org/10.4049/jimmunol.180.9.5771.
13. Chung Y, Chang SH, Martinez GJ et al. 2009, Apr 17. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 30(4): 576—87. http://dx.doi.org/10.1016/j.immuni.2009.02.007.
14. Decker T, Muller M, Stockinger S. 2005. The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol. 5(9): 675—87. http://dx.doi.org/10.1038/nri1684.
15. Hughes CE, Harvey RM, Plumptre CD et al. 2014. Development of primary invasive pneumococcal disease caused by serotype 1 pneumococci is driven by early increased type I interferon response in the lung. Infect Immun. 82(9): 3919—26. http://dx.doi.org/10.1128/IAI.02067-14.
16. Jeong DG, Jeong ES, Seo JH et al. 2011. Difference in Resistance to Streptococcus pneumoniae Infection in Mice. Lab Anim Res. 27(2): 91—8. http://dx.doi.org/10.5625/lar.2011.27.2.91.
17. Dinarello CA. 2010. IL-1: discoveries, controversies and future directions. Eur J Immunol. 40(3). — P. 599—606. http://dx.doi.org/10.1002/eji.201040319.
18. Dinarello CA. 2006. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 83(2): 447—455. PMID: 16470011.
19. Dinarello CA. 2005. The many worlds of reducing interleukin-1. Arthritis Rheum. 52(7): 1960—7. http://dx.doi.org/10.1002/art.21107.
20. Hatta M, Yamamoto N, Miyazato A et al. 2010. Early production of tumor necrosis factor-alpha by Gr-1 cells and its role in the host defense to pneumococcal infection in lungs. FEMS Immunol Med Microbiol. 58(2): 182—92. http://dx.doi.org/10.1111/j.1574-695X.2009.00616.x.
21. Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D. 2010. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine. 50(1): 1—14. http://dx.doi.org/10.1016/j.cyto.2009.11.021.
22. Groom JR, Luster AD. 2011. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 89(2): 207—15. http://dx.doi.org/10.1038/icb.2010.158.
23. Gu C, Wu L, Li X. 2013. IL-17 family: cytokines, receptors and signaling. Cytokine. 64(2): 477—85. http://dx.doi.org/10.1016/j.cyto.2013.07.022.
24. Bode JG, Albrecht U, Haussinger D et al. 2012. Hepatic acute phase proteins — regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kB-dependent signaling. Eur J Cell Biol. 91(6—7): 496—505. http://dx.doi.org/10.1016/j.ejcb.2011.09.008.
25. Michels K, Nemeth E, Ganz T, Mehrad B. 2015, Aug 20. Hepcidin and Host Defense against Infectious Diseases. PLoS Pathog. 11(8): e1004998. http://dx.doi.org/10.1371/journal.ppat.1004998.
26. Rodriguez R, Jung CL, Gabayan V et al. 2014. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 82(2): 745—52. http://dx.doi.org/10.1128/IAI.00983-13.
27. Hunter CA, Jones SA. 2015. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 16(5): 448—57. http://dx.doi.org/10.1038/ni.3153.
28. Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 Cells. Annu Rev Immunol. 27: 485—517. http://dx.doi.org/10.1146/annurev.immunol.021908.132710.
29. Lauw FN, Branger J, Florquin S et al. 2002, Jan 1. IL-18 improves the early antimicrobial host response to pneumococcal pneumoniae. J Immunol. 168(1): 372—8. http://dx.doi.org/10.4049/jimmunol.168.1.372.
30. Netea MG, Simon A, van de Veerdonk F et al. 2010, Feb 26. IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog. 6(2): e1000661. http://dx.doi.org/10.1371/journal.ppat.1000661.
31. Nemeth E, Rivera S, Gabayan V et al. 2004. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 113(9): 1271—6. http://dx.doi.org/10.1172/JCI200420945.
32. Rijneveld AW, Weijer S, Florquin S et al. 2004, Feb 15. Improved host defense against pneumococcal pneumoniae in platelet-activating factor receptor-deficient mice. J Infect Dis. 189(4): 711—6. http://dx.doi.org/10.1086/381392.
33. Parker D, Ahn D, Cohen T, Prince A. 2016. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev. 96(1): 19—53. http://dx.doi.org/10.1152/physrev.00009.2015.
34. Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. 2009, Jan 37. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. Database issue: D852—7. http://dx.doi.org/10.1093/nar/gkn732.
35. Yamada M, Gomez JC, Chugh PE et al. 2011, May 15. Interferon- γ production by neutrophils during bacterial pneumoniae in mice. Am J Respir Crit Care Med. 183(10): 1391—401. http://dx.doi.org/10.1164/rccm.201004-0592OC.
36. Yang H, Ko HJ, Yang JY et al. 2013, Jan 1. Interleukin-1 promotes coagulation, which is necessary for protective immunity in the lung against Streptococcus pneumoniae infection. J Infect Dis. 207(1): 50—60. http://dx.doi.org/10.1093/infdis/jis651.
37. Abdalla AE, Lambert N, Duan X, Xie J. 2016. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci. 12(6): 710—7. http://dx.doi.org/10.7150/ijbs.13881.
38. Penaloza HF, Nieto PA, Munoz-Durango N et al. 2015. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology. 146(1): 100—12. http://dx.doi.org/10.1111/imm.12486.
39. Lu YJ, Gross J, Bogaert D et al. 2008, Sep 19. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 4(9): e1000159. http://dx.doi.org/10.1371/journal.ppat.1000159.
40. Kuranaga N, Kinoshita M, Kawabata T et al. 2006, Oct 1. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production. J Infect Dis. 194(7): 993—1002. http://dx.doi.org/10.1086/507428.
41. Van Der Poll T, Keogh CV, Guirao X et al. 1997. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumoniae. J Infect Dis. 176: 439—444. http://dx.doi.org/10.1086/514062.
42. Joyce EA, Popper SJ, Falkow S. 2009, Aug 27. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics. 10: 404. http://dx.doi.org/10.1186/1471-2164-10-404.
43. Kadioglu A, Andrew PW. 2004. The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol. 25(3): 143—9. http://dx.doi.org/10.1016/j.it.2003.12.006.
44. Albrecht LJ, Tauber SC, Merres J et al. 2016. Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis. Mediators Inflamm. 2016: 7678542. http://dx.doi.org/10.1155/2016/7678542.
45. LaRock CN, Nizet V. 2015. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta. 1848; 11 Pt B: 3047—54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.
46. Lemon JK, Miller MR, Weiser JN. 2015. Sensing of interleukin-1 cytokines during Streptococcus pneumoniae colonization contributes to macrophage recruitment and bacterial clearance. Infect Immun. 83(8): 3204—12. http://dx.doi.org/10.1128/IAI.00224-15.
47. Jones MR, Simms BT, Lupa MM et al. 2005, Dec 1. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumoniae. J Immunol. 175(11): 7530—5. http://dx.doi.org/10.4049/jimmunol.175.11.7530; PMid:16301661 PMCid:PMC2723739.
48. Ma K, Zhang H, Baloch Z. 2016, May 14. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review. Int J Mol Sci. 17(5): pii: E733. http://dx.doi.org/10.3390/ijms17050733.
49. Gomez JC, Yamada M, Martin JR et al. 2015. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumoniae. Am J Respir Cell Mol Biol. 52(3): 349—64. http://dx.doi.org/10.1165/rcmb.2013-0316OC.
50. Tai KP, Kamdar K, Yamaki J et al. 2015. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun. 21(1): 17—29. doi:10.1177/175342591351478.
51. Wang E, Simard M, Ouellet N et al. 2000. Modulation of cytokines and chemokines, limited pulmonary vascular bed permeability, and prevention of septicemia and death with ceftriaxone and interleukin-10 in pneumococcal pneumoniae. J Infect Dis. 182(4): 1255—9. http://dx.doi.org/10.1086/315811.
52. Murugan V, Peck MJ. 2009. Signal transduction pathways linking the activation of alveolar macrophages with the recruitment of neutrophils to lungs in chronic obstructive pulmonary disease. Exp Lung Res. 35(6): 439—85. http://dx.doi.org/10.1080/01902140902759290; PMid:19842832.
53. Palomo J, Dietrich D, Martin P. 2015. The interleukin (IL)-1 cytokine family-Balance between agonists and antagonists in inflammatory diseases. Cytokine. 76(1): 25—37. http://dx.doi.org/10.1016/j.cyto.2015.06.017.
54. Van Der Poll T, Keogh CV, Buurman WA, Lowry SF. 1997. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumoniae in mice. Am J Respir Crit Care Med. 155: 603—608. http://dx.doi.org/10.1164/ajrccm.155.2.9032201.
55. Paterson GK, Orihuela CJ. 2010. Pneumococci: immunology of the innate host response. Respirology. 15(7): 1057—63. http://dx.doi.org/10.1111/j.1440-1843.2010.01814.x.
56. Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D. 2011. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev. 24(3): 557—91. http://dx.doi.org/10.1128/CMR.00008-11.
57. Schaaf BM, Boehmke F, Esnaashari H et al. 2003, Aug 15. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med. 168(4): 476—80. http://dx.doi.org/10.1164/rccm.200210-1164OC.
58. Tian X, Xu F, Lung WY et al. 2012. Poly I. C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS One. 7(9): e41879. http://dx.doi.org/10.1371/journal.pone.0041879.
59. Hoe E, Boelsen LK, Toh ZQ et al. 2015, Jun 12. Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children. PLoS One. 10(6): e0129199. http://dx.doi.org/10.1371/journal.pone.0129199.
60. Koedel U, Winkler F, Angele B et al. 2002. Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Ann Neurol. 51(3): 319—29. http://dx.doi.org/10.1002/ana.10103.
61. Kerr AR, Irvine JJ, Search JJ et al. 2002. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect Immun. 70(3): 1547—57. http://dx.doi.org/10.1128/IAI.70.3.1547-1557.2002.
62. Rijneveld AW, van den Dobbelsteen GP, Florquin S et al. 2002, Jan 1. Roles of interleukin-6 and macrophage inflammatory protein-2 in pneumolysin-induced lung inflammation in mice. J Infect Dis. 185(1): 123—6. http://dx.doi.org/10.1086/338008.
63. Salzman NH. 2010, Nov-Dec. Paneth cell defensins and the regulation of the microbiome: Detente at mucosal surfaces. Gut Microbes. 1(6): 401—406. doi: 10.4161/gmic.1.6.1407.
64. Schape F, Rose-John S. 2015. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26(5): 475—87. http://dx.doi.org/10.1016/j.cytogfr.2015.07.004.
65. Iovino F, Brouwer MC, et van de Beek D et al. 2013. Signalling or binding: the role of the platelet-activating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15(6): 870—81. http://dx.doi.org/10.1111/cmi.12129.
66. Srivastava S, Salim N, Robertson MJ. 2010. Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem. 17(29): 3353—7. http://dx.doi.org/10.2174/092986710793176348.
67. Scharf S, Zahlten J, Szymanski K et al. 2012. Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium. Exp Lung Res. 38(2): 100—10. http://dx.doi.org/10.3109/01902148.2011.652802.
68. Huang J, Yu S, Ji C, Li J. 2015. Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis. 20(2): 210—5. http://dx.doi.org/10.1007/s10495-014-1061-5.
69. Sоrensen OE, Borregaard N. 2016, May 2. Neutrophil extracellular traps — the dark side of neutrophils. J Clin Invest. 126(5): 1612—20. http://dx.doi.org/10.1172/JCI84538.
70. Tanaka T, Narazaki M, Kishimoto T. 2014, Sep 4. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 6(10): a016295. http://dx.doi.org/10.1101/cshperspect.a016295.
71. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007, Mar 1. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol. 178(5): 3143—52. http://dx.doi.org/10.4049/jimmunol.178.5.3143.
72. Rijneveld AW, Florquin S, Branger J et al. 2001, Nov 1. TNF-alpha compensates for the impaired host defense of IL-1 type I receptor-deficient mice during pneumococcal pneumoniae. J Immunol. 167(9): 5240—6. http://dx.doi.org/10.4049/jimmunol.167.9.5240.
73. Xu Q, Surendran N, Verhoeven D et al. 2015, Feb 18. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumoniae and correlates with phagocytosis by neutrophils during early pathogenesis. Vaccine. 33(8): 993—1000. http://dx.doi.org/10.1016/j.vaccine.2015.01.014.
74. Jeong DG, Seo JH, Heo SH et al. 2015. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae. Lab Anim Res. 31(2): 78—85. http://dx.doi.org/10.5625/lar.2015.31.2.78.
75. Yamamoto K, Ferrari JD, Cao Y et al. 2012, Sep 1. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumoniae. J Immunol. 189(5): 2450—9. http://dx.doi.org/10.4049/jimmunol.1200634.
76. Uematsu S, Akira S. 2007, May 25. Toll-like receptors and Type I interferons. J Biol Chem. 282(21): 15319—23. http://dx.doi.org/10.1074/jbc.R700009200.
77. Von Kockritz-Blickwede M, Blodkamp S, Nizet V. 2016, Mar 30. Interaction of Bacterial Exotoxins with Neutrophil Extracellular Traps: Impact for the Infected Host. Front Microbiol. 7: 402. http://dx.doi.org/10.3389/fmicb.2016.00402.
78. Weber A, Wasiliew P, Kracht M. 2010, Jan 19. Interleukin-1 (IL-1) pathway. Sci Signal. 3(105): cm1. http://dx.doi.org/10.1126/scisignal.3105cm1.
79. Werno AM, Anderson TP, Murdoch DR. 2012. Association between pneumococcal load and disease severity in adults with pneumoniae. J Med Microbiol. 61; Pt 8: 1129—35. http://dx.doi.org/10.1099/jmm.0.044107-0.
80. Zhang X, Rovin BH. 2013. Beyond anemia: hepcidin, monocytes and inflammation. Biol Chem. 394(2): 231—8. http://dx.doi.org/10.1515/hsz-2012-0217.
81. Zhang X, Rovin BH. 2010. Hepcidin expression by human monocytes in response to adhesion and pro-inflammatory cytokines. Biochim Biophys Acta. 1800(12): 1262—7. doi: 10.1016/j.bbagen. 2010.08.005.
82. Zhang Z, Clarke TB. 2009. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest. 119(7): 1899—909. http://dx.doi.org/10.1172/JCI36731.