- Analysis of the functional activity of salivary glands in children with influenza and other respiratory viral infections
Analysis of the functional activity of salivary glands in children with influenza and other respiratory viral infections
Modern Pediatrics. Ukraine. (2025).7(151): 6-13. doi: 10.15574/SP.2025.7(151).613
Gevkaliuk N. O., Martyts Y. M., Mykhailiuk V. M.
Ivan Horbachevsky Ternopil National Medical University, Ukraine
For citation: Gevkaliuk NO, Martyts YM, Mykhailiuk VM. (2025). Analysis of the functional activity of salivary glands in children with influenza and other respiratory viral infections. Modern Pediatrics. Ukraine. 7(151): 6-13. doi: 10.15574/SP.2025.7(151).613.
Article received: Jun 16, 2025. Accepted for publication: Nov 09, 2025.
Acute respiratory viral infections (ARVI) occupy the first place in the structure of children's infections. Rashes on the mucous membranes in the oral cavity reflect the patterns of the infectious process as a whole.
Aim – to is aimed at evaluating the secretory function of salivary glands, physico-chemical, and morpho-structural features of oral fluid in different forms of severity of influenza stomatitis in children.
Materials and methods. The rate of salivation in 318 children with ARVI lesions of the oral cavity was performed on an empty stomach without stimulation in graduated tubes to further morphological examination. Qualitative analysis of secretion was determined visually. Determination of the viscosity was performed on a capillary viscometer Oswald; the buffer capacity was determined as described Krasse, the pH was determined, and crystalography of oral fluid was conducted. The research on the secretory function of salivary glands was conducted by sialometri method.
Results. The rate of salivation in patients with acute viral stomatitis caused by the influenza virus decreased with increasing severity of disease in severe ARVI 3.17 times compared to children in the control group. Counting the functioning of minor salivary glands showed their reduction to 11.46±0.14 with severe acute viral stomatitis. The qualitative analysis showed that salivary gland secretions increase their viscosity and the presence of visible inclusions. Determination of the pH of the oral fluid showed a shift to the acidic side. The buffer capacity is directly dependent on the rate of salivation and pH. The nature of changes in the crystals of the oral fluid is determined by the severity of lesions of the oral mucosa.
Conclusions. Changes in physico-chemical properties, acid-salt metabolism, morpho-texture pecularities, changes in the crystals of oral fluid occurring against the background of hiposalivation show a decrease in functional activity of salivary glands in ARVI in children with disease manifestations in the oral cavity.
The research was carried out in accordance with the principles of the Declaration of Helsinki. The study protocol was approved by the Local Bioethics Commission of an institution. For each child, the informed consent of their mother to participate in the study was obtained.
The authors declare no conflict of interest.
Keywords: mucous membrane, pathological bites, occlusion, oral fluid, crystallogram, hyposalivation, acute respiratory viral infections (ARVI).
REFERENCES
1. Almståhl A, Finizia C, Carlén A, Fagerberg-Mohlin B, Alstad T. (2018). Explorative study on mucosal and major salivary secretion rates, caries and plaque microflora in head and neck cancer patients. Int J Dent Hyg. 16(4): 450-458. https://doi.org/10.1111/idh.12338; PMid:29532594
2. Aro K, Wei F, Wong DT, Tu M. (2017). Saliva Liquid Biopsy for Point-of-Care Applications. Front Public Healthю. 5: 77. https://doi.org/10.3389/fpubh.2017.00077; PMid:28443278 PMCid:PMC5387045
3. Atukorallaya DS, Ratnayake RK. (2021). Oral Mucosa, Saliva, and COVID-19 Infection in Oral Health Care. Front Med (Lausanne). 8: 656926. https://doi.org/10.3389/fmed.2021.656926; PMid:33968961 PMCid:PMC8100190
4. Baker OJ, Ruhl S, Kramer JM, Edgerton M. (2014). Saliva-Microbe Interactions and Salivary Gland Dysfunction. Advances in Dental Research. 26(1): 7-14. https://doi.org/10.1177/0022034514526239; PMid:24736699 PMCid:PMC6636232
5. Boroumand M, Olianas A, Cabras T, Manconi B, Fanni D, Faa G et al. (2021). Saliva, a bodily fluid with recognized and potential diagnostic applications. J Sep Sci. 44(19): 3677-3690. https://doi.org/10.1002/jssc.202100384; PMid:34350708 PMCid:PMC9290823
6. Campbell AE, Cavanaugh VJ, Slater JS. (2008). The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol. 197(2): 205-213. https://doi.org/10.1007/s00430-008-0077-2; PMid:18259775
7. Carvalho MFMS, Cavalieri D, Do Nascimento S, Lourenço TGB, Ramos DVR, Pasqualin D da C, et al. (2019). Cytokines Levels and Salivary Microbiome Play A Potential Role in Oral Lichen Planus Diagnosis. Scientific Reports. 9(1). https://doi.org/10.1038/s41598-019-54615-y; PMid:31792433 PMCid:PMC6889227
8. Cuevas-Córdoba B, Santiago-García J. (2014). Saliva: a fluid of study for OMICS. OMICS. 18(2): 87-97. https://doi.org/10.1089/omi.2013.0064; PMid:24404837
9. Eubanks DL, Woodruff KA. (2010). The basics of saliva. J Vet Dent. 27(4): 266-267. https://doi.org/10.1177/089875641002700413; PMid:21322433
10. Gevkaliuk N, Sydliaruk N, Pynda M, Pudiak V, Krupey V. (2018). Condition of non-specific resistance of oral mucous membrane in children with viral influenza stomatitis in the concept of MALT-system. Georgian Med News. 280-281: 34-40. PMID: 30204091.
11. Gevkaliuk NO, Krupey VY. (2022). Theoretical basics and modern concepts of acute initial dental caries treatment in children (Literature review). Odessa medical journal. 1-2(179-180): 73-78. https://doi.org/10.54229/2226-2008-2022-1-2-13
12. Giorgiutti-Dauphiné F, Pauchard L. (2018). Drying drops: Drying drops containing solutes: From hydrodynamical to mechanical instabilities. Eur Phys J E Soft Matter. 41(3): 32. https://doi.org/10.1140/epje/i2018-11639-2; PMid:29546533
13. Gritzmann N, Rettenbacher T, Hollerweger A, Macheiner P, Hübner E. (2003). Sonography of the salivary glands. Eur Radiol. 13(5): 964-975. https://doi.org/10.1007/s00330-002-1586-9; PMid:12695816
14. Jankowska AK, Waszkiel D, Kobus A, Zwierz K. (2007). Saliva as a main component of oral cavity ecosystem. Part II. Defense mechanisms. Wiad Lek. 60(5-6): 253-257. PMID: 17966890.
15. Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V, Ebrahimpour S. (2021). A brief review of influenza virus infection. J Med Virol. 93(8): 4638-4646. https://doi.org/10.1002/jmv.26990; PMid:33792930
16. Larsen KR, Johansen JD, Reibel J, Zachariae C, Rosing K, Pedersen AML. (2017). Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis. BMC Oral Health. 17(1): 103. https://doi.org/10.1186/s12903-017-0393-2; PMid:28662707 PMCid:PMC5492674
17. Lee YH, Wong DT. (2009). Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 22(4): 241-248. PMID: 19824562; PMCID: PMC2860957.
18. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmüller G, Artati A et al. (2019). The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 98(6): 642-651. https://doi.org/10.1177/0022034519842853; PMid:31026179
19. Melguizo-Rodríguez L, Costela-Ruiz VJ, Manzano-Moreno FJ, Ruiz C, Illescas-Montes R. (2020). Salivary Biomarkers and Their Application in the Diagnosis and Monitoring of the Most Common Oral Pathologies. Int J Mol Sci. 21(14): 5173. https://doi.org/10.3390/ijms21145173; PMid:32708341 PMCid:PMC7403990
20. Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI et al. (2021). Identification of proteins associated with the formation of oral biofilms. Pesqui Bras Odontopediatria Clín Integr. 21: e0128. https://doi.org/10.1590/pboci.2021.084
21. Moore J, Simpson MTW, Cohen N, Beyea JA, Phillips T. (2023). Approach to sialadenitis. Can Fam Physician. 69(8): 531-536. https://doi.org/10.46747/cfp.6908531; PMid:37582587 PMCid:PMC10426371
22. Petrone-García VM, Castellanos-Huerta I, Tellez-Isaias G. (2023). Editorial: High-impact respiratory RNA virus diseases. Front Vet Sci. 10: 1273650. https://doi.org/10.3389/fvets.2023.1273650; PMid:37675076 PMCid:PMC10478262
23. Rabinov JD. (2000). Imaging of salivary gland pathology. Radiol Clin North Am. 38(5): 1047-1057. X-XI. https://doi.org/10.1016/S0033-8389(05)70220-7; PMid:11054968
24. Scelza G, Amato A, Pagano AM, Matteis G, Caruso R, Scelza A et al. (2021). Effect of hepatitis C antiviral therapy on oral lichen planus and hyposalivation in inmates. Ann Gastroenterol. 35(1): 74-79. https://doi.org/10.20524/aog.2021.0672; PMid:34987292 PMCid:PMC8713335
25. Sun L, Wong HM, McGrath CPJ. (2018). Association Between the Severity of Malocclusion, Assessed by Occlusal Indices, and Oral Health Related Quality of Life: A Systematic Review and Meta-Analysis. Oral Health Prev Dent. 16(3): 211-223. https://doi.org/10.3290/j.ohpd.a40761; PMID: 30027162.
26. Syafriza D, Sutadi H, Primasari A, Siregar Y. (2021). Spectrophotometric analysis of Streptococcus mutans growth and biofilm formation in saliva and histatin-5 relate to pH and viscosity. Pesqui Bras Odontopediatria Clín Integr. 21: e0018. https://doi.org/10.1590/pboci.2021.004
27. Tasoulas J, Patsouris E, Giaginis C, Theocharis S. (2016). Salivaomics for oral diseases biomarkers detection. Expert Rev Mol Diagn. 16(3): 285-295. https://doi.org/10.1586/14737159.2016.1133296; PMid:26680995
28. Timofeyev AA, Timofeyev AA, Vesova AI. (2010). Secretory function of major and minor salivary glands in healthy people. Sovrem stomatologiya. 2: 100-102.
29. Tzimas K, Pappa E. (2023). Saliva Metabolomic Profile in Dental Medicine Research. A Narrative Review Metabolites. 13(3): 379. https://doi.org/10.3390/metabo13030379; PMid:36984819 PMCid:PMC10052075
30. Zen R, Rigo L, Gaviolli E, Girotto LPS, Mário DN. (2020). Effect of recreational intervention on the approach of pediatric patients in dental treatment: analysis of salivary cortisol. Pesqui Bras Odontopediatria Clín Integr. 20: e4796. https://doi.org/10.1590/pboci.2020.036
