• TLR7-associated primary pure red cell aplasia in a boy with multigenic modifiers
en To content Full text of article

TLR7-associated primary pure red cell aplasia in a boy with multigenic modifiers

Modern Pediatrics. Ukraine. (2025).6(150): 94-103. doi: 10.15574/SP.2025.6(150).94103
Dorosh O. I.1,2, Trofimova N. S.3,4, Mykh A. M.1
1СNE of Lviv Regional Council “Clinical Center of Childrens' Healthcare”, SD “Western Ukrainian Specialized Centre”, Ukraine
2Danylo Halytsky Lviv National Medical University, Ukraine
3National Specialized Children's Hospital 'OHMATDYT' of the Ministry of Health of Ukraine, Kyiv
4SI "National Scientific Center 'The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine' of the NAMS of Ukraine", Kyiv

For citation: Dorosh OI, Trofimova NS, Mykh AM. (2025). TLR7-associated primary pure red cell aplasia in a boy with multigenic modifiers. Modern Pediatrics. Ukraine. 6(150): 94-103. doi: 10.15574/SP.2025.6(150).94103.
Article received: Apr 11, 2025. Accepted for publication: Sep 16, 2025.

Primary pure red cell aplasia (PRCA) in infants is a rare condition characterized by isolated suppression of erythropoiesis in the bone marrow. In children, it most commonly has a viral or autoimmune origin; however, isolated cases are associated with primary genetically determined immune dysregulation. TLR7 mutations have infrequently been described as a key factor in the development of PRCA in early childhood. Expanded genetic analysis enables the detection of causative and concurrent variants, as well as mosaic structural chromosomal abnormalities that may modify the clinical phenotype and immune dysregulation.
Aim – to describe a clinical case of PRCA in a boy with a hemizygous TLR7 mutation, accompanying genetic modifiers, and immune dysregulation, including disproportion of lymphocyte subpopulations and marked hypogammaglobulinemia.
Clinical case. At 9 months of age, the boy first diagnosed with transfusion-dependent anemia accompanied by a severe decrease in reticulocytes, hepatosplenomegaly, and a strongly positive direct Coombs test without evidence of hemolysis. Bone marrow examination revealed a marked reduction of the erythroid lineage while overall cellularity was preserved. Lymphocyte analysis revealed normal total counts but a mild disproportion, with increased B cells and decreased T cells, while the CD4/CD8 ratio remained normal. Hypogammaglobulinemia detected without infectious manifestations, along with elevated liver enzymes. Genetic testing identified a hemizygous TLR7 mutation (p.His1038Tyr), concomitant heterozygous variants in SPTA1, TTC7A, HFE, FANCF, FANCM, as well as mosaic deletions in 9p23-p21.1 and 7p14.1-р14.1. The peripheral blood smear demonstrated ovalocytes, correlating with the SPTA1 variant. Treatment with prednisolone, intravenous immunoglobulin, deferasirox led to a positive clinical and laboratory response.
Conclusions. The TLR7-mutated gene is a principal driver of PRCA, while accompanying genetic variants and mosaic deletions contribute to a polygenic, modified phenotype, influencing disease severity, erythrocyte morphology, and immune dysregulation, including disproportion of lymphocyte subpopulations and marked hypogammaglobulinemia. These findings emphasize the importance of comprehensive genetic and immunological evaluation in children with rare forms of PRCA.
The research was carried out in accordance with the principles of the Helsinki Declaration. The informed consent of the patient was obtained for conducting the studies.
Keywords: pure red cell aplasia, hemizygous TLR7 mutation (p.His1038Tyr), primary immune dysregulation, hypogammaglobulinemia, children.

REFERENCES

1. Anil More T, Kedar P. (2022). Unravelling the genetic and phenotypic heterogeneity of SPTA1 gene variants in Hereditary Elliptocytosis and Hereditary Pyropoikilocytosis patients using next-generation sequencing. Gene. 843: 146796. Epub 2022 Aug 9. https://doi.org/10.1016/j.gene.2022.146796; PMid:35961434

2. Bakrac M, Jurisic V, Kostic T, Popovic V, Pekic S et al. (2007). Pure red cell aplasia associated with type I autoimmune polyglandular syndrome-successful response to treatment with mycophenolate mofetil: case report and review of literature. J Clin Pathol. 60(6): 717-720. Epub 2007 Jan 12. https://doi.org/10.1136/jcp.2006.042671; PMid:17220208 PMCid:PMC1955055

3. Blom E, van de Vrugt HJ, de Winter JP, Arwert F, Joenje H. (2002). Evolutionary clues to the molecular function of fanconi anemia genes. Acta Haematol. 108(4): 231-236. https://doi.org/10.1159/000065659; PMid:12432219

4. Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, Roco JA et al. (2022). TLR7 gain-of-function genetic variation causes human lupus. Nature. 605(7909): 349-356. Epub 2022 Apr 27. https://doi.org/10.1038/s41586-022-04642-z; PMid:35477763 PMCid:PMC9095492

5. Busolin A, Vely F, Eymard-Duvernay G, Barlogis V, Fabre A. (2024). Systematic review of phenotypes and genotypes of patients with gastrointestinal defects and immunodeficiency syndrome-1 (GIDID1) (related to TTC7A). Intractable Rare Dis Res. 13(2): 89-98. https://doi.org/10.5582/irdr.2023.01109; PMid:38836179 PMCid:PMC11145403

6. Da Costa L, Leblanc T, Mohandas N. (2020). Diamond-Blackfan anemia. Blood. 136(11): 1262-1273. https://doi.org/10.1182/blood.2019000947; PMid:32702755 PMCid:PMC7483438

7. David C, Badonyi M, Kechiche R, Insalaco A, Zecca M, De Benedetti F et al. (2024). Interface Gain-of-Function Mutations in TLR7 Cause Systemic and Neuro-inflammatory Disease. J Clin Immunol. 44(2): 60. https://doi.org/10.1007/s10875-024-01660-6; PMid:38324161 PMCid:PMC10850255

8. Fejtkova M, Sukova M, Hlozkova K, Skvarova Kramarzova K, Rackova M, Jakubec D et al. (2022). TLR8/TLR7 dysregulation due to a novel TLR8 mutation causes severe autoimmune hemolytic anemia and autoinflammation in identical twins. Am J Hematol. 97(3): 338-351. Epub 2022 Jan 28. https://doi.org/10.1002/ajh.26452; PMid:34981838

9. Feng S, Zeng D, Zheng J, Zhao D. (2020). New Insights of Human Parvovirus B19 in Modulating Erythroid Progenitor Cell Differentiation. Viral Immunol. 33(8): 539-549. Epub 2020 May 15. https://doi.org/10.1089/vim.2020.0013; PMid:32412895

10. Gong Y, Chai X, Liu X, Zhang Y, Li Y, Li Y et al. (2025). Comprehensive analysis of the clinical feature, myeloid neoplasm-related gene mutation profiles and T cell diversity acquired pure red cell aplasia. Ann Hematol. Epub ahead of print. https://doi.org/10.1007/s00277-025-06638-x; PMid:40996462 PMCid:PMC12552327

11. Leveau C, Gajardo T, El-Daher MT, Cagnard N, Fischer A et al. (2020). Ttc7a regulates hematopoietic stem cell functions while controlling the stress-induced response. Haematologica. 105(1): 59-70. Epub 2019 Apr 19. https://doi.org/10.3324/haematol.2018.207100; PMid:31004027 PMCid:PMC6939534

12. Li H, Lodish HF, Sieff CA. (2018). Critical Issues in Diamond-Blackfan Anemia and Prospects for Novel Treatment. Hematol Oncol Clin North Am. 32(4): 701-712. Epub 2018 Jun 5. https://doi.org/10.1016/j.hoc.2018.04.005; PMid:30047421 PMCid:PMC8162701

13. Li X, Zhu X, Zhang X, Wang W. (2023). Successful treatment of a pure red-cell aplasia patient with γδT cells and clonal TCR gene rearrangement: A case report. Front Immunol. 13: 1103448. https://doi.org/10.3389/fimmu.2022.1103448; PMid:36726982 PMCid:PMC9885080

14. Liu Y, Niu H, Ren J, Wang Z, Yan L, Xing L et al. (2023). Single-cell RNA sequencing reveals abnormal transcriptome signature of erythroid progenitors in pure red cell aplasia. Genes Dis. 11(1): 49-52. https://doi.org/10.1016/j.gendis.2023.03.002; PMid:37588205 PMCid:PMC10425790

15. Luo Y, Kleiboeker S, Deng X, Qiu J. (2013). Human parvovirus B19 infection causes cell cycle arrest of human erythroid progenitors at late S phase that favors viral DNA replication. J Virol. 87(23): 12766-75. Epub 2013 Sep 18. https://doi.org/10.1128/JVI.02333-13; PMid:24049177 PMCid:PMC3838147

16. Menon S, Maurice D, Robinson LA, Milner J, Pascual V et al. (2024). Refractory Autoimmune Thrombocytopenia in an Infant with a De Novo TLR7 Gain-of-Function Variant. J Clin Immunol. 45(1): 27. https://doi.org/10.1007/s10875-024-01824-4; PMid:39433707 PMCid:PMC7616824

17. Moreno Toro N, Gámez Belmonte A, Alperi García S, Morillas Mingorance Á, Ortega Acosta MJ, Urrutia Maldonado E et al. (2023). Hereditary elliptocytosis: A novel mutation in the SPTA1 gene and diagnosis after a stroke in paediatric patients. A two-case report. Pediatr Blood Cancer. 70(7): e30316. Epub 2023 Apr 5. https://doi.org/10.1002/pbc.30316; PMid:37016817

18. Nakazawa H, Sakai K, Ohta A, Fujishima N, Matsuda A, Hosokawa K et al. (2022). Incidence of acquired pure red cell aplasia: a nationwide epidemiologic analysis with 2 registry databases in Japan. Blood Adv. 6(24): 6282-6290. https://doi.org/10.1182/bloodadvances.2021006486; PMid:35522950 PMCid:PMC9806328

19. Rivetti G, Abbate FG, Longobardi M, Marrapodi MM, Lanzaro F, Di Martino M et al. (2024). Transient erythroblastopenia of childhood after COVID-19 infection: a case report. Ital J Pediatr. 50(1): 131. https://doi.org/10.1186/s13052-024-01700-2; PMid:39075575 PMCid:PMC11288083

20. Roberti G, Maestrini G, Polito B, Amato L, Parolo E, Casazza G et al. (2025). Inborn Errors of Immunity in Pediatric Hematology and Oncology: Diagnostic Principles for Clinical Practice. J Clin Med. 14(17): 6295. https://doi.org/10.3390/jcm14176295; PMid:40944054 PMCid:PMC12429287

21. Shen M. (2023). A case report of T-LGL leukemia-associated pure red cell aplasia harboring STAT3, TNFAIP3, and KMT2D mutation. Transl Cancer Res. 12(4): 1054-1059. Epub 2023 Apr 10. https://doi.org/10.21037/tcr-23-326; PMid:37180665 PMCid:PMC10174971

22. Srinivas U, Mahapatra M, Saxena R, Pati HP. (2007). Thirty-nine cases of pure red cell aplasia: a single center experience from India. Hematology. 12(3): 245-248. https://doi.org/10.1080/10245330701255056; PMid:17558701

23. Stremenova Spegarova J, Sinnappurajar P, Al Julandani D, Navickas R, Griffin H, Ahuja M et al. (2024). A de novo TLR7 gain-of-function mutation causing severe monogenic lupus in an infant. J Clin Invest. 134(13): e179193. https://doi.org/10.1172/JCI179193; PMid:38753439 PMCid:PMC11213501

24. Tavil B, Sanal O, Turul T, Yel L, Gurgey A, Gumruk F. (2009). Parvovirus B19-induced persistent pure red cell aplasia in a child with T-cell immunodeficiency. Pediatr Hematol Oncol. 26(2): 63-68. https://doi.org/10.1080/08880010902754735; PMid:19322736

25. Turshudzhyan A, Wu DC, Wu GY. (2023). Primary Non-HFE Hemochromatosis: A Review. J Clin Transl Hepatol. 11(4):925-931. doi: 10.14218/JCTH.2022.00373. Epub 2023 Feb 2. PMID: 37408807; PMCID: PMC10318284.

26. Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS et al. (2018). The Genetic Landscape of Diamond-Blackfan Anemia. Am J Hum Genet. 103(6): 930-947. Epub 2018 Nov 29. doi: 10.1016/j.ajhg.2018.10.027. Erratum in: Am J Hum Genet. 2019 Feb 7; 104(2): 356. https://doi.org/10.1016/j.ajhg.2018.12.011; PMid:30735661 PMCid:PMC6372259

27. Van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S et al. (2020). Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA. 324(7): 663-673. https://doi.org/10.1001/jama.2020.13719; PMid:32706371 PMCid:PMC7382021

28. Wang ZJ, Qiu YN, Yu H, Tan LF, Qu P, Jin RM. (2019). Pure red cell aplasia in children: a clinical analysis of 16 cases. Zhongguo Dang Dai Er Ke Za Zhi. 21(8): 772-776. doi: 10.7499/j.issn.1008-8830.2019.08.007. PMID: 31416501; PMCID: PMC7389893.