• Chaperonin as the normal controls and pathological anti-stress response in the human reproductive system
en To content

Chaperonin as the normal controls and pathological anti-stress response in the human reproductive system

HEALTH OF WOMAN. 2016.5(111):126–129; doi 10.15574/HW.2016.111.126


Chaperonin as the normal controls and pathological anti-stress response in the human reproductive system


Makarenko M., Hovsyeyev D., Sydoryk L.

A.A. Bogomolets National Medical University, Kiev

Institute of molecular biology and genetics National Academy of Sciences of Ukraine, Kyiv


Different kinds of physiological stress cause mass changes in the cells, including the changes in the structure and function of the protein complexes and in separate molecules. The protein functions is determined by its folding (the spatial conclusion), which depends on the functioning of proteins of thermal shock- molecular chaperons (HSPs) or depends on the stress proteins, that are high-conservative; specialized proteins that are responsible for the correct proteinaceous folding.

The family of the molecular chaperones/ chaperonins/ Hsp60 has a special place due to the its unique properties of activating the signaling cascades through the system of Toll-like receptors; it also stimulates the cells to produce anti- inflammatory cytokines, defensins, molecules of cell adhesion and the molecules of MHC; it functions as the intercellular signaling molecule.

The pathological role of Hsp60 is established in a wide range of illnesses, from diabetes to atherosclerosis, where Hsp60 takes part in the regulation of both apoptosis and the autoimmune processes. The presence of the HSPs was found in different tissues that are related to the reproductive system.


Key words: molecular chaperons (HSPs), Toll-like receptors, reproductive function, natural auto antibody.


REFERENCES

1. Hartl FU. 1996. Molecular chaperons in cellular protein folding. Nature. 381:571–580. http://dx.doi.org/10.1038/381571a0; PMid:8637592

2. Quintana FJ, Cohen IR. 2011. The Hsp60 immune system network. Trends in Immunol. 32;2:89–95. http://dx.doi.org/10.1016/j.it.2010.11.001; PMid:21145789

3. Basu S, Srivastava PK. 2000. Heat shock proteins: the fountainhead of innate and adaptive immune response. Cell Stress Chaperons. 5;5:443–451. http://dx.doi.org/10.1379/1466-1268(2000)005<0443:HSPTFO>2.0.CO;2

4. Garrido C, Gurbuxani S, Ravangan L, Kroemer G. 2001. Heat Shock Proteins: Endogenous Modulators of Apoptotic Cell Death. BBRC. 286:433–442. http://dx.doi.org/10.1006/bbrc.2001.5427

5. Patterson C, Cyr D. 2002. Welcome to the Machine: A Cardiologist’s Introduction to Protein Folding and Degradation. Circulation. 106:2741–2746. http://dx.doi.org/10.1161/01.CIR.0000041145.30519.6B; PMid:12438302

6. Zugel U, Kaufmann SH. 1999. Heat shock proteins in protection from and pathogenesis of infectious diseases. Clin.Microbiol.Rev. 12:19–39. PMid:9880473 PMCid:PMC88905

7. Ranford JC, Henderson B. 2002. Chaperonins in diseases: mechanisms, models, and treatment. J. Clin.Pat ol.: Mol.Pat ol. 55:209–213.

8. Gupta S, Knowlton AA. 2005. Hsp60, Bax, apoptosis and the heart. J.Cell.Mol.Med. 9:51–58. http://dx.doi.org/10.1111/j.1582-4934.2005.tb00336.x; PMid:15784164

9. Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92:351–366. http://dx.doi.org/10.1016/S0092-8674(00)80928-9

10. Pockley AG, Bulmer J, Hanks BM, Wrigt B. 1999. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperons. 4:29–35. http://dx.doi.org/10.1379/1466-1268(1999)004<0029:IOHHSP>2.3.CO;2

11. Matzinger Р. 1994. Tolerance, danger and the extended family. Annu Rev Immunol. 12:9912–1045. http://dx.doi.org/10.1146/annurev.iy.12.040194.005015; PMid:8011301

12. Paterson C, Cyr D. 2002. Welcome to the Machine: A Cardiologist’s Introduction to Protein Folding and Degradation. Circulation 106:2741–2746. http://dx.doi.org/10.1161/01.CIR.0000041145.30519.6B

13. Xu Q, Schett G, Perchinka H. 2000. Serum soluble heat schock protein 60 is elevated in subjects with atherosclerosis in general population. Circulation 102:14–20. http://dx.doi.org/10.1161/01.CIR.102.1.14; PMid:10880409

14. Maguire M, Coates ARM, Henderson B. 2002. Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperons. 7(4):313–329. http://dx.doi.org/10.1379/1466-1268(2002)007<0317:CUISOC>2.0.CO;2

15. Gupta S, Knowlton AA. 2007. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Physiol Heart Circ Physiol. 292:3052–3056. http://dx.doi.org/10.1152/ajpheart.01355.2006; PMid:17307989

16. Znag L, Pelech SL, Mayrand D, Greiner D, Heino I, Uitto VJ. 2001. Bacterial heat schock protein-60 increases epithelial cell proliferation through the ERK Ѕ MAP kinases. Exp Cell Res. 266:244–250.

17. Mayr M, Metzler B, Kiechl S et al. 2005. Endothelial cytotoxity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumonia: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99:1560–1566. http://dx.doi.org/10.1161/01.CIR.99.12.1560

18. Ohue R, Hashimoto K, Nakamoto M et al. 2011. Bacterial Heat Shock Protein 60, GroEL, Can Induce the Conversion of Naпve T Cells into a CD4 + CD25 + Foxp3-Expressing Phenotype. J Innate Immun. 3:605–613. http://dx.doi.org/10.1159/000330786; PMid:21893964

19. Galdiero M, De L’ero G, Marcatili A. 1997. Cytokine and Adhesion Molecule Expression in Human Monocytes and Endothelial Cells Stimulated with Bacterial Heat Shock Proteins. Infection and immunity 2:699–707.

20. Yokota SH, Hirata D, Minota S et al. 2000. Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: comparison with antibodies against other Hsp60 family proteins. Cell stress and Chap. 4:337–346. http://dx.doi.org/10.1379/1466-1268(2000)005<0337:AACCIH>2.0.CO;2

21. Huurman VA et al. 2007. Immunological efficacy of heat schock protein 60 peptide DiaPep277 therapy in clinival type I diabetes patients. Diabetes Metab.Res.Rev. 23:292–298.

22. Broadley SA, Hartl FU. 2008. Mitochondrial stress signaling: a pathway unfolds. Trends in Cell Biology 18;1:1–4. http://dx.doi.org/10.1016/j.tcb.2007.11.003; PMid:18068368

23. Soltys BJ, Gupta S. 2000. Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. International Review of Cytology 194:133–196. http://dx.doi.org/10.1016/S0074-7696(08)62396-7

24. Fisch P, Malkovsky M, Kovats S et al. 1990. Recognition by human Vг9/Vd2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250:1269–1273. http://dx.doi.org/10.1126/science.1978758; PMid:1978758

25. Kaur I, Voss SD, Gupta RS et al. 1993. Human peripheral гд T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. The Journal of Immunology 150;5:2046–2055. PMid:8094731

26. Vabulas RM, Ahmad-Nejad P, da Costa C et al. 2001. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276:31332–31339. http://dx.doi.org/10.1074/jbc.M103217200; PMid:11402040

27. Cubota A, Hynes G, Willson K. 1995. The chaperonin containing t- complex polypeptide 1 (TCP-1): multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem. 230:3–16. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20527.x

28. Yokota S, Minota S, Nobuhiro F. 2006. Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Intern. Immun. 18:573–580. http://dx.doi.org/10.1093/intimm/dxh399; PMid:16481340

29. Kapustian L, Rozhko O, Bobyk V, Krupska YV, Riabenko D, Khozhaienko Iu, Hurtovyi V, Usenko V. 2008. Vyvchennia zmin kilkisnoho rivnia molekuliarnoho shaperonu Hsp60 u tkanyni sertsia pry dyliatatsiinii kardiomiopatii. Biopolimery i klityna 24;3:238–245.

30. Pockley AG, Wu R, Lemne C et al. 2000. Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307. http://dx.doi.org/10.1161/01.HYP.36.2.303; PMid:10948094

31. Kaur I, Voss SD, Gupta RS et al. 1993. Human peripheral yd T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. The Journal of Immunology 150;5:2046–2055. PMid:8094731

32. Feng H, Zeng Y, Whitesell L, Katsanis E, Luke W, Emmanuel K. 2001. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97;11:3505–3512. http://dx.doi.org/10.1182/blood.V97.11.3505

33. Friedland JS, Shattock R, Remik DJ, Griffin GE. 1993. Mycobacterial 65-kDa heat shock protein induces release of proinflammatory cytokines from human monocytes cells. Clin.Exp. Immunol. 91:58–62. http://dx.doi.org/10.1111/j.1365-2249.1993.tb03354.x; PMid:8419086 PMCid:PMC1554637

34. Poletaev AB. 2002. Immunologicheskiy gomunkulus v nopme i ppi patologii. Biohimiya 67;5:721–731.

35. Aalberse JS, Prakken BJ, Kapitein B. 2012. HSP: bystander antigen in atopic diseases? Frontiers in Immunology 3:1–8. http://dx.doi.org/10.3389/fimmu.2012.00139; PMid:22666223 PMCid:PMC3364480

36. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. 2007. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 117;3:712–718. http://dx.doi.org/10.1172/JCI29943; PMid:17332892 PMCid:PMC1804342