- Folates: Modern Pregnant Health Support
Folates: Modern Pregnant Health Support
HEALTH OF WOMAN. 2020.4(150): 37–42; doi 10.15574/HW.2020.150.37
Khaitovich M. V.
Bogomolets National Medical University, Kiev
Folates (folic acid-based chemical compounds) got their name from the Latin “folio” – “leaf”, since they were first synthesized from spinach leaves, in which vitamin B9 is found in maximum quantities. As an important cofactor in carbon metabolism, folates are involved in the most important metabolic processes in the body, in particular, they play a key role in the synthesis of nucleotides and DNA replication.
The article provides information on the physiological role of folates, their metabolism and its genetic aspects. The clinical significance of folate deficiency is examined, their sources and doses are described, and the interaction of folic acid and drugs is highlighted.
Keywords: folate, metabolism, folic acid deficiency, pregnancy.
REFERENCES
1. Grechanina EYa, Lesovoy VN, Myasoedov VV, Grechanina YuB, Gusar VA. Zakonomernaya svyaz mezhdu razvitiem nekotoryih epigeneticheskih bolezney i narusheniem metilirovaniya DNK vsledstvie defitsita fermentov folatnogo tsikla. https://pdfs.semanticscholar.org/c290/539f66e539cada55bbc5220ad6f5833531fa.pdf/
2. Koh NV, Slepuhina AA, Lifshits GI. 2015. Folatnyiy tsikl: obzor i prakticheskie rekomendatsii po interpretatsii geneticheskih testov. Meditsinskaya genetika 14(11):3-8.
3. Rossoha ZI. 2019. Suchasni peredumovy do profilaktyky ta likuvannia henetychno zumovlenykh porushen folatnoho obminu u podruzhnikh par z reproduktyvnymy razladamy v anamnezi. Zdorove zhenshchyny 139(3):31-34.
4. Rossokha ZI, Kyriachenko SP, Horovenko NH. 2018. Rol mizhhennoi vzaiemodii MTHFR, MTRR, MTR1 u rozvytku porushen folatnoho obminu u patsiientok iz reproduktyvnymy rozladamy. Ukrainskyi medychnyi chasopys 3(2): 125. https://www.umj.com.ua/article/126970
5. Ars CL, Nijs IM, Marroun HE et al. 2019, Sep. Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: the Generation R Study. Br J Nutr. 122(s1):S1-S9. https://doi.org/10.1017/S0007114515002081; PMid:31638501
6. Castillo-LC, Tur JA, Uauy R et al. 2012, Feb. Folate and Breast Cancer Risk: A Systematic Review. Rev Med Chil. 140(2):251-60. https://doi.org/10.4067/S0034-98872012000200016; PMid:22739957
7. Chittiboyina C et al. 2018. The role of the folate pathway in pancreatic cancer risk. PLoS ONE. 13(2):e0193298. https://doi.org/10.1371/journal.pone.0193298; PMid:29474406 PMCid:PMC5825090
8. Essén A et al. 2019, Jun. Baseline Serum Folate, Vitamin B12 and the Risk of Prostate and Breast Cancer Using Data From the Swedish AMORIS Cohort. Cancer Causes Control. 30(6):603-615. https://doi.org/10.1007/s10552-019-01170-6; PMid:31020446
9. Harris HR et al. 2012. Folate Intake and Breast Cancer Mortality in a Cohort of Swedish Women Breast Cancer Res Treat. 132(1):243-50. https://doi.org/10.1007/s10549-011-1838-y; PMid:22037788 PMCid:PMC3747350
10. Jung S et al. 2016. Alcohol Consumption and Breast Cancer Risk by Estrogen Receptor Status: In a Pooled Analysis of 20 Studies Int J Epidemiol. 45(3):916-28. https://doi.org/10.1093/ije/dyv156; PMid:26320033 PMCid:PMC5005939
11. Kim HJ et al. 2017. Alcohol Consumption and Breast Cancer Risk in Younger Women According to Family History of Breast Cancer and Folate Intake. Am J Epidemiol. 186(5):524-531. https://doi.org/10.1093/aje/kwx137; PMid:28520842 PMCid:PMC5860629
12. Kim SJ et al. 2019. Folic Acid Supplement Use and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: A Case-Control Study. Breast Cancer Res Treat. 174(3):741-748. https://doi.org/10.1007/s10549-018-05118-3; PMid:30603998
13. Koren G, Moser SS. 2019, Nov. Does high-dose gestational folic acid increase the risk for autism? The birth order hypothesis. Med Hypotheses. 132:109350. https://doi.org/10.1016/j.mehy.2019.109350; PMid:31421417
14. Kotova N, Maichuk V, Fedorenko O. 2018, Jan. The differentiated approach to prevention of neural tube defects in children. Georgian Med News (274):52-59.
15. Kotsopoulos J et al. 2012, Sep. A Folate and Breast Cancer: What About High-Risk Women? 23(9):1405-1420. https://doi.org/10.1007/s10552-012-0022-y; PMid:22767328
16. Li Q, Xu S, Chen X et al. 2020, May. Folic Acid Supplement Use and Increased Risk of Gestational Hypertension. Hypertension. 11: HYPERTENSIONAHA11914621. https://doi.org/10.1161/HYPERTENSIONAHA.119.14621; PMid:32389074
17. Liu C, Luo D, Wang Q et al. 2020, Mar 18. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: the Sichuan Homocysteine study. BMC Pregnancy Childbirth. 20(1):176. https://doi.org/10.1186/s12884-020-02860-9; PMid:32188414 PMCid:PMC7081627
18. Mahajan A, Sapehia D, Thakur S et al. 2019. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep. 9(1):17602. https://doi.org/10.1038/s41598-019-54070-9; PMid:31772242 PMCid:PMC6879517
19. Martínez GRM. 2016, Jul 12. Supplements in pregnancy: the latest recommendationsNutr Hosp. 33(Suppl 4):336. https://doi.org/10.20960/nh.336
20. Matejcic M et al. 2017. Biomarkers of Folate and Vitamin B12 and Breast Cancer Risk: Report From the EPIC Cohort. Int J Cancer. 140(6):1246-1259. https://doi.org/10.1002/ijc.30536; PMid:27905104
21. Mishra J, Tomar A, Puri M et al. 2020, Jan. Trends of folate, vitamin B12, and homocysteine levels in different trimesters of pregnancy and pregnancy outcomes. Am J Hum Biol. 2:e23388. https://doi.org/10.1002/ajhb.23388; PMid:31898383
22. Mokbel K et al. 2019. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review . In Vivo. 33(4):983-997. https://doi.org/10.21873/invivo.11568; PMid:31280187 PMCid:PMC6689356
23. Patel KR, Sobczyńska-Malefora A. 2017, Feb. The adverse effects of an excessive folic acid intake. Eur J Clin Nutr. 71(2):159-163. Epub 2016 Oct 12. https://doi.org/10.1038/ejcn.2016.194; PMid:27731331
24. Pieroth R et al. 2018, Sep. Folate and Its Impact on Cancer Risk Curr Nutr Rep. 7(3):70-84. https://doi.org/10.1007/s13668-018-0237-y; PMid:30099693 PMCid:PMC6132377
25. Romagnolo DF et al. 2016, Jun. Epigenetics of Breast Cancer: Modifying Role of Environmental and Bioactive Food Compounds Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201501063; PMid:27144894 PMCid:PMC5580834
26. Servy EJ et al. 2018. Effect of high dose folic acid supplementation in pregnancy on pre-eclampsia (FACT): double blind, phase III, randomised controlled, international, multicentre trial. BMJ. 362:k3478. https://doi.org/10.1136/bmj.k3478; PMid:30209050 PMCid:PMC6133042
27. Servy EJ, Jacquesson-Fournols L, Cohen M, Menezo YJR. 2018, Aug. MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series. J Assist Reprod Genet. 35(8):1431-1435. https://doi.org/10.1007/s10815-018-1225-2; PMid:29882091 PMCid:PMC6086798
28. Martin T et al. 2014, Jun. Folate Intake and the Risk of Breast Cancer: A Systematic Review and Meta-Analysis Breast Cancer Res Treat. https://doi.org/10.1007/s10549-014-2969-8; PMid:24777595
29. Viswanathan M, Treiman KA, Doto JK et al. Folic Acid Supplementation: An Evidence Review for the U.S. Preventive Services Task Force.
30. WHO recommendatons on antenatal care for a positve pregnancy experience. 2017:175. https://www.who.int/reproductivehealth/publications/maternal_perinatal_health/anc-positive-pregnancy-experience/en/
31. Yusuf KK, Salihu HM, Wilson R et al. 2019, May. Comparing Folic Acid Dosage Strengths to Prevent Reduction in Fetal Size Among Pregnant Women Who Smoked Cigarettes. JAMA Pediatr. 173(5):493-494. https://doi.org/10.1001/jamapediatrics.2019.0112; PMid:30882856 PMCid:PMC6503513