- The role of exogenous peptides in restoration of full immune response under secondary immunodeficiency
The role of exogenous peptides in restoration of full immune response under secondary immunodeficiency
HEALTH OF WOMAN.2017.1(117):89–97; doi 10.15574/HW.2017.117.89
A.I. Kurchenko, V.A. Benyuk, H.P. Potebnya, V.L. Kobys, O.F.Tatskyy, O.S. Neymark
National medical University named after O. O. Bogomolets, Kyiv
Institute of experimental pathology, Oncology and radiobiology them. R. E. Kavetsky NAS of Ukraine, Kyiv
Kyiv city clinical cancer center
LLC «Spirica», Kyiv
The objective: defining the role of immunomodulation with the use of exogenous peptides MHP (Camelyn-Bio) on the effectiveness of treatment of cervical dysplasia I-II that was caused by mixed chlamydia and human papillomavirus infection.
Patients and methods. In accordance with the objectives of the study we selected and randomized 72 patients with dysplasia (paplomavirus-chlamydial etiology). Women were divided into two groups: basic (n=36) and control (n=36) matched by age, symptoms and duration of the process. The main conventional treatment group received Camelyn-Bio capsules at a dose of 1 capsule (0.19 g) 3 times a day 30 days from starting treatment.
Results. The result of the reduction in viral load lower than a clinically significant threshold (3 lg) was achieved in 70% of patients in control group and 77.8% in the main group. Therefore, adequate complex therapy taking into account the role of exogenous peptides reduces the activity of HPV, promotes its elimination, reduces the frequency of relapses. The effectiveness of combined therapy of mild cervical dysplasia with the use of Camelyn-Bio was 88.9%. In the group of patients receiving standard therapy, the efficacy was 83.4%.
Conclusion. Now to resolve vital clinical tasks a practitioner has an innovative agent Camelyn-Bio, which, in particular, speeds up the elimination of HPV in women of childbearing age. The inclusion of Camelyn-Bio in the traditional scheme of treatment of cervical dysplasia is justified etiopatogeneticaly and allows to harmonize the immune homeostasis of patients and allows to increase the effectiveness of treatment.
Key words: exogenous peptides, T-lymphocytes, macrophages, interleukins, immune homeostasis, human papillomavirus, dysplasia, treatment, efficacy.
REFERENCES
1. Allam R et al. 2014. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO reports. 15:982–990. https://doi.org/10.15252/embr.201438463; PMid:24990442 PMCid:PMC4198042
2. Arend WP, Palmer G, Gabay C. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223:20–38. https://doi.org/10.1111/j.1600-065X.2008.00624.x; PMid:18613828
3. Elssner A, Duncan M, Gavrilin M, Wewers MD. 2004. A Novel P2X7 Receptor Activator, the Human Cathelicidin-Derived Peptide LL37, Induces IL-1 Beta Processing and Release. J Immunol 172(8):4987-4994. https://doi.org/10.4049/jimmunol.172.8.4987; PMid:15067080
4. Bals R, Wilson JM. 2003. Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol Life Sci. 60:711-720. https://doi.org/10.1007/s00018-003-2186-9; PMid:12785718
5. Bandurska K, Berdowska A, Barczyсska-Felusiak, Krupa P. Unique features of human cathelicidin LL-37.
6. Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO. 2011. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One.
7. Baroja-Mazo A et al. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature immunology 15:738–748. https://doi.org/10.1038/ni.2919; PMid:24952504
8. Baroni MV, Chiabrando GA, Costa C, Wunderlin DA. 2002, Mar 13. Assessment of the floral origin of honey by SDS-page immunoblot techniques. J Agric Food Chem. 50(6):1362-7. https://doi.org/10.1021/jf011214i; PMid:11879003
9. Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V. 2011. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. Journal of immunology 187:613–617. https://doi.org/10.4049/jimmunol.1100613; PMid:21677136 PMCid:PMC3131480
10. Bucki R, Leszczynska K, Namiot A, Sokolowski W. 2010. Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz) 58:15–25. https://doi.org/10.1007/s00005-009-0057-2; PMid:20049649
11. Buettner R, Mora LB, Jove R. 2002. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 8(4):945–954. PMid:11948098
12. Burns K, Martinon F, Tschopp J. 2003. New insights into the mechanism of IL-1beta maturation. Curr Opin Immunol 15:26–30. https://doi.org/10.1016/S0952-7915(02)00017-1
13. Martin BN, Wang C, Zhang C, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do J, Min B, Pavicic PG Jr, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. 2016. T cell–intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nature Immunology 17:583–592. https://doi.org/10.1038/ni.3389; PMid:26998763 PMCid:PMC5385929
14. Chua LS, Lee JY, Chan GF. 2013, Apr. Honey protein extraction and determination by mass spectrometry. Anal Bioanal Chem. 405(10):3063-74. https://doi.org/10.1007/s00216-012-6630-2; PMid:23292042
15. Compan V et al. 2012. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity. 37:487-500. https://doi.org/10.1016/j.immuni.2012.06.013; PMid:22981536
16. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. 2001. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. The Journal of biological chemistry. 276:41985-41990. https://doi.org/10.1074/jbc.M107419200; PMid:11553634
17. Davis BK, Wen H, Ting JPY. 2011. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annual Review of Immunology 29:707–735. https://doi.org/10.1146/annurev-immunol-031210-101405; PMid:21219188 PMCid:PMC4067317
18. Dinarello CA. 2009. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annual Review of Immunology 27:519–550. https://doi.org/10.1146/annurev.immunol.021908.132612; PMid:19302047
19. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. 2011. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. Journal of Hepatology. 55(4):920–932. https://doi.org/10.1016/j.jhep.2011.05.008; PMid:21718726
20. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674-677. https://doi.org/10.1126/science.1156995; PMid:18403674 PMCid:PMC2396588
21. Mosser DM, Edwards JP. 2008, Dec. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8(12):958–969. https://doi.org/10.1038/nri2448; PMid:19029990 PMCid:PMC2724991
22. Eder C. 2009. Mechanisms of interleukin-1[beta] release. Immunobiology 214:543-553. https://doi.org/10.1016/j.imbio.2008.11.007; PMid:19250700
23. El Hallani S, Boisselier B, Peglion F et al. 2010. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133:973-982. https://doi.org/10.1093/brain/awq044; PMid:20375132 PMCid:PMC4861203
24. Everett KD. 2000. Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol 75:109–26. https://doi.org/10.1016/S0378-1135(00)00213-3
25. Foss FM. 2002, Jun. Immunologic mechanisms of antitumor activity. Semin Oncol. 29(3 Suppl 7):5-11. https://doi.org/10.1053/sonc.2002.33076; PMid:12068382
26. Franchi L et al. 2014. Cytosolic Double-Stranded RNA Activates the NLRP3 Inflammasome via MAVS-Induced Membrane Permeabilization and K+ Efflux. Journal of immunology. 193:4214-4222. https://doi.org/10.4049/jimmunol.1400582; PMid:25225670 PMCid:PMC4185247
27. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247. https://doi.org/10.1038/ni.1703; PMid:19221555 PMCid:PMC2820724
28. Franklin BS et al. 2014. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nature immunology. 15:727–737. https://doi.org/10.1038/ni.2913; PMid:24952505 PMCid:PMC4116676
29. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, Geijtenbeek TB. 2012. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol. https://doi.org/10.1038/ni.2222; PMid:22267217
30. Guillemin GJ, Brew BJ. 2004. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 75:388–397. https://doi.org/10.1189/jlb.0303114; PMid:14612429
31. Gurung P et al. 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. Journal of immunology. 192:1835-1846. https://doi.org/10.4049/jimmunol.1302839; PMid:24453255 PMCid:PMC3933570
32. Nasarian H, Taghavizad R, Majd A. 2010. Origin of honey proteins and method for its quality control. Pak. J. Bot. 42(5):3221-3228.
33. den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV. 2005. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J. 388:689–695. https://doi.org/10.1042/BJ20042099; PMid:15707390 PMCid:PMC1138977
34. Yilmaz H, Kufrevioglu O. 2003. Proteins in honey. GIDA. 28(2):155–157.
35. Hendrix MJ, Seftor EA, Seftor RE, Chao JT, Chien DS, Chu YW. 2016, Mar. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther. 159:83–92. https://doi.org/10.1016/j.pharmthera.2016.01.006; PMid:26808163 PMCid:PMC4779708
36. Hentze H, Lin XY, Choi MS, Porter AG. 2003. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 10(9):956–968. https://doi.org/10.1038/sj.cdd.4401264; PMid:12934070
37. Hornung V et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature immunology. 9:847-856. https://doi.org/10.1038/ni.1631; PMid:18604214 PMCid:PMC2834784
38. Iacob SA, Iacob DG. 2014. Antibacterial function of the human cathelicidin-18 peptide (LL-37) between theory and practice. Protein Pept Lett. 21(12):1247–56. PMid:25101632
39. Hawkins J. Investigating Antibacterial Plant-Derived Compounds from Natural Honey.2015.Cardiff Univ: 11.
40. Majtan J, Kovacova E, Bilikova K, Simъth J. 2006. The immunostimulatory effect of the recombinant apalbumin 1-major honeybee royal jelly protein-on TNFa release. International Immunopharmacology. 6(2):269–78. https://doi.org/10.1016/j.intimp.2005.08.014; PMid:16399632
41. Jamasbi RJ, Wan X, Stoner GD. 1994, Feb. Epitope masking of rat esophageal carcinoma tumor-associated antigen by certain coexisting glycolipid and phospholipid molecules: a potential mechanism for tumor cell escape from the host immune responses. Cancer Immunol Immunother. 38(2):99–106. https://doi.org/10.1007/BF01526204; https://doi.org/10.1007/s002620050041; PMid:7508339
42. Kailasan Vanaja S et al. 2014. Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America. 111:7765–7770. https://doi.org/10.1073/pnas.1400075111; PMid:24828532 PMCid:PMC4040571
43. Kai-Larsen Y, Agerberth B. 2008. The role of the multifunctional peptide LL-37 in host defense. Front Biosci. 13:3760–3767. https://doi.org/10.2741/2964; PMid:18508470
44. Karlsson J, Carlsson G, Larne O, Andersson M, Putsep K. 2008. Vitamin D3 induces pro-LL-37 expression in myeloid precursors from patients with severe congenital neutropenia. J Leukoc Biol. 84:1279–1286. https://doi.org/10.1189/jlb.0607437; PMid:18703682
45. Kanneganti TD et al. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 440:233–236. https://doi.org/10.1038/nature04517; PMid:16407888
46. Kanneganti TD. 2010. Central roles of NLRs and inflammasomes in viral infection. Nature reviews Immunology. 10:688–698. https://doi.org/10.1038/nri2851; PMid:20847744 PMCid:PMC3909537
47. Lai Y, Gallo RL. 2009. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30:131–141. https://doi.org/10.1016/j.it.2008.12.003; PMid:19217824 PMCid:PMC2765035
48. Latz E. 2010. The inflammasomes: mechanisms of activation and function. Current Opinion in Immunology 22:28–33. https://doi.org/10.1016/j.coi.2009.12.004; PMid:20060699 PMCid:PMC2844336
49. Li HM, Chen J, Xiong CM, Wei H, Yin CC, Ruan JL. 2014. Apoptosis Induction by the Total Flavonoids from Arachniodes exilis in HepG2 Cells through Reactive Oxygen Species-Mediated Mitochondrial Dysfunction Involving MAPK Activation. Evid-Based Compl Alt. 2014(5):906941.
50. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 311:1770–1773. https://doi.org/10.1126/science.1123933; PMid:16497887
51. Locati M, Mantovani A, Sica A. 2013. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 120:163–84. https://doi.org/10.1016/B978-0-12-417028-5.00006-5; PMid:24070384
52. Chua LS, Lee JY, Chan GF. 2015. Characterization of the Proteins in Honey. Analytical Letters. 48;4:697–709. https://doi.org/10.1080/00032719.2014.952374
53. Wang L, Fu H, Nanayakkara G, Li Y, Shao Y, Johnson C, Cheng J, Yang WY, Yang F, Lavallee M, Xu Y, Cheng X, Xi H, Yi J, Yu J, Choi ET, Wang H, Yang X. 2016. Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. J Hematol Oncol. 9:122. https://doi.org/10.1186/s13045-016-0351-5; PMid:27842563 PMCid:PMC5109738
54. Lupfer C, Kanneganti TD. 2013. The expanding role of NLRs in antiviral immunity. Immunological reviews. 255:13–24. https://doi.org/10.1111/imr.12089; PMid:23947344 PMCid:PMC3759815
55. Mariathasan S et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 440:228–232. https://doi.org/10.1038/nature04515; PMid:16407890
56. Marina-Garcia N et al. 2008. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. Journal of immunology. 180:4050–4057. https://doi.org/10.4049/jimmunol.180.6.4050
57. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440:237–241. https://doi.org/10.1038/nature04516; PMid:16407889
58. Martinon F, Agostini L, Meylan E, Tschopp J. 2004. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Current biology : CB. 14:1929–1934. https://doi.org/10.1016/j.cub.2004.10.027; PMid:15530394
59. Martinon F, Mayor A, Tschopp. 2009. The Inflammasomes: Guardians of the Body. Annual Review of Immunology 27:229–265. https://doi.org/10.1146/annurev.immunol.021908.132715; PMid:19302040
60. McDonald DM, Munn L, Jain RK. 2000. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 156:383–388. https://doi.org/10.1016/S0002-9440(10)64740-2
61. Mesaik MA, Dastagir N, Uddin N, Rehman K, Azim MK. 2015, Jan 14. Characterization of Immunomodulatory Activities of Honey Glycoproteins and Glycopeptides. J Agric Food Chem. 63(1):177–84. https://doi.org/10.1021/jf505131p; PMid:25496517
62. Pazgier M, Ericksen B, Ling M, Toth E, Shi J, Li X, Galliher-Beckley A, Lan L, Zou G, Zhan C, Yuan W, Pozharski E, Lu W. 2013, Mar 5. Structural and functional analysis of the pro-domain of human cathelicidin, LL-37. Biochemistry. 52(9):1547–1558. https://doi.org/10.1021/bi301008r; PMid:23406372 PMCid:PMC3634326
63. Mello T, Zanieri F, Ceni E, Galli A. 2016. Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. Oxid Med Cell Longev. 2016:8327410. https://doi.org/10.1155/2016/8327410; PMid:26788252 PMCid:PMC4691634
64. Mocarski ES, Upton JW, Kaiser WJ. 2012. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol. 12:79–88.
65. Mohamed Lamkanfi VMD. 2009. Inflammasomes: guardians of cytosolic sanctity. Immunological Reviews 227:95–105. https://doi.org/10.1111/j.1600-065X.2008.00730.x; PMid:19120479
66. Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti T, Dixit VM. 2010, Oct 1. Inflammasome-Dependent Release of the Alarmin HMGB1 in Endotoxemia. J Immunol. 185(7):4385–4392. https://doi.org/10.4049/jimmunol.1000803; PMid:20802146 PMCid:PMC3428148
67. Nakatsura T, Komori H, Kubo T, Yoshitake Y, Senju S, Katagiri T, Furukawa Y, Ogawa M, Nakamura Y, Nishimura Y. 2004. Mouse homologue of a novel human oncofetal antigen, glypican-3, evokes T-cell-mediated tumor rejection without autoimmune reactions in mice. Clin Cancer Res. 10:8630–8640. https://doi.org/10.1158/1078-0432.CCR-04-1177; PMid:15623647
68. Nijnik A, Pistolic J, Filewod NC, Hancock RE. 2012. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 4:377–386. https://doi.org/10.1159/000335901; PMid:22516952
69. Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249–266. https://doi.org/10.1111/j.0105-2896.2004.0119.x; PMid:15199967
70. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K. 1995. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 378(6552):88–91. https://doi.org/10.1038/378088a0; PMid:7477296
71. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY. 2002. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 347:1151–1160. https://doi.org/10.1056/NEJMoa021481; PMid:12374875
72. Ostojic S, Dubanchet S, Chaouat G, Abdelkarim M, Truyens C, Capron F. 2003. Demonstration of the presence of IL-16, IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. Am J Reprod Immunol. 49(2):101-112. https://doi.org/10.1034/j.1600-0897.2003.01150.x; PMid:12765349
73. Pedra JHF, Cassel SL, Sutterwala FS. 2009. Sensing pathogens and danger signals by the inflammasome. Current Opinion in Immunology 21:10–16. https://doi.org/10.1016/j.coi.2009.01.006; PMid:19223160 PMCid:PMC2701640
74. Putsep K, Carlsson G, Boman HG, Andersson M. 2002. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet. 360:1144–1149. https://doi.org/10.1016/S0140-6736(02)11201-3
75. Rico-Mata R, De Leon-Rodriguez LM, Avila EE. 2013. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 133:300–306. https://doi.org/10.1016/j.exppara.2012.12.009; PMid:23274811
76. Ahmed S, Othman NH. 2013. Honey as a Potential Natural Anticancer Agent: A Review of Its Mechanisms. Evid Based Complement Alternat Med. 2013:829070. https://doi.org/10.1155/2013/829070; PMid:24363771 PMCid:PMC3865795
77. Sander LE et al. 2011. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature. 474:385–389. https://doi.org/10.1038/nature10072; PMid:21602824 PMCid:PMC3289942
78. Sachse K, Laroucau K, Riege K, Wehner S, Dilcher M, Creasy HH, Weidmann M, Myers G, Vorimore F, Vicari N et al. 2014. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst Appl Microbiol 37:79–88. https://doi.org/10.1016/j.syapm.2013.12.004; PMid:24461712
79. Se-Ra Won, Deug-Chan Lee, Seuk Hyun Ko, Jang-Won Kim, Hae-Ik Rhee. 2008. Honey major protein characterization and its application to adulteration detection. Food Research International 41:952–956. https://doi.org/10.1016/j.foodres.2008.07.014
80. Sims JE, Smith DE. 2010. The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102. https://doi.org/10.1038/nri2691; PMid:20081871
81. Sha W et al. 2014. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1412487111
82. Steinstraesser L, Tippler B, Mertens J, Lamme E, Homann HH, Lehnhardt M, Wildner O, Steinau HU, Uberla K. 2005. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology. 2:2. https://doi.org/10.1186/1742-4690-2-S1-P2; https://doi.org/10.1186/1742-4690-2-S1-S2; https://doi.org/10.1186/1742-4690-2-2; PMid:15656908 PMCid:PMC548510
83. Stout RD, Suttles J. 2004. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 76:509–513. https://doi.org/10.1189/jlb.0504272; PMid:15218057 PMCid:PMC1201486
84. Strowig T, Henao-Mejia J, Elinav E, Flavell R. 2012. Inflammasomes in health and disease. Nature 481:278–286. https://doi.org/10.1038/nature10759; PMid:22258606
85. Hayashi T, Takamatsu N, Nakashima T, Arita T. 2011. Immunological Characterization of Honey Proteins and Identification of MRJP 1 as an IgE-binding protein. Biosci Biotechnol Biochem. 75(3):556–60. https://doi.org/10.1271/bbb.100778; PMid:21389615
86. Szczкsna T. 2006. Protein content and amino acid composition of bee-collected pollen from selected botanical origins. Journal of Apicultural Science. 50;2:81–90.
87. Tímár J, Tóvári J., Rásó E., Mészáros L, Bereczky B, Lapis K. 2005. Platelet-Mimicry of Cancer Cells: Epiphenomenon with Clinical Significance. Oncology 69:185–201. https://doi.org/10.1159/000088069; PMid:16138000
88. Thomas PG et al. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity. 30:566–575. https://doi.org/10.1016/j.immuni.2009.02.006; PMid:19362023 PMCid:PMC2765464
89. Tsai WH, Chuang HY, Chen HH, Wu YW, Cheng SH, Huang TC. 2010, Dec 3. Application of sugaring-out extraction for the determination of sulfonamides in honey by high-performance liquid chromatography with fluorescence detection. J Chromatogr A. 1217(49):7812–5. https://doi.org/10.1016/j.chroma.2010.10.008; PMid:21044783
90. Turkson J, Jove R. 2000. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 19(56):6613–6626. https://doi.org/10.1038/sj.onc.1204086; PMid:11426647
91. Unemo M, Seth-Smith HMB, Cutcliffe LT, Skilton RJ, Barlow D, Goulding D, Persson K, Harris SR, Kelly A, Bjartling C et al. 2010. The Swedish new variant of Chlamydia trachomatis: Genome sequence, morphology, cell tropism and phenotypic characterization. Microbiology 156:1394–1404. https://doi.org/10.1099/mic.0.036830-0; PMid:20093289 PMCid:PMC3541825
92. Voog E, Ricksten A, Stenglein M, Jonassen F, Ternesten A, Ryd W, Lцwhagen GB. 1997. Are acetowhite lesions of the cervix correlated to the presence of Epstein-Barr virus DNA? Int J STD AIDS. 8:432–436. https://doi.org/10.1258/0956462971920488; PMid:9228590
93. Wang G. 2007. Tool developments for structure-function studies of host defense peptides. Protein Pept Lett. 14:57–69. https://doi.org/10.2174/092986607779117182; PMid:17266652
94. Wang G. 2012. Natural antimicrobial peptides as promising anti-HIV candidates. Curr. Topics Peptide Proteins. 13:93–110.
95. Wang G, Epand RF, Mishra B, Lushnikova T, Thomas VC, Bayles KW, Epand RM. 2012. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob Agents Chemother. 56:845–856. https://doi.org/10.1128/AAC.05637-11; PMid:22083479 PMCid:PMC3264245
96. Wang G, Watson KM, Buckheit RW, Jr. 2008. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother. 52:3438–3440. https://doi.org/10.1128/AAC.00452-08; PMid:18591279 PMCid:PMC2533476
97. Williamson AL, Chattopadhyay K, Hazra A, Dandara C. 2015. The combined risks of reduced or increased function variants in cell death pathway genes differentially influence cervical cancer risk and herpes simplex virus type 2 infection among black Africans and the Mixed Ancestry population of South Africa. BMC Cancer. 15:680. https://doi.org/10.1186/s12885-015-1678-y; PMid:26458812 PMCid:PMC4603903
98. Wright TC, Stoler MH, Behrens CM, Sharma A, Zhang G, Wright TL. 2015. Primary cervical cancer screening with human papillomavirus: end of study results from the ATHENA study using HPV as the first-line screening test. Gynecol Oncol. 136:189–197. https://doi.org/10.1016/j.ygyno.2014.11.076; PMid:25579108
99. Wohlmeister D, Barreto Vianna D, Etges Helfer Vi, Gimenes F, Lopes Consolaro M, Bones Barcellos R, Rossetti ML, Calil L, Buffon A, Pilger DA. 2016, Feb. Association of human papillomavirus and Chlamydia trachomatis with intraepithelial alterations in cervix samples. Mem Inst Oswaldo Cruz. 111(2):106–113. https://doi.org/10.1590/0074-02760150330; PMid:26841046 PMCid:PMC4750450
100. Wu WK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, Wu K, Yu J, Sung JJ, Cho CH. 2010. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int J Cancer. 127:1741–1747. https://doi.org/10.1002/ijc.25489; PMid:20521250 PMCid:PMC2930073
101. Haruyama Y, Kataoka H. 2016, Jan 7. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J Gastroenterol. 22(1):275–283. https://doi.org/10.3748/wjg.v22.i1.275; PMid:26755876 PMCid:PMC4698492
102. Zanetti M. 2005. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 7:179–196. PMid:16053249
103. Zhang C, Jia X, Bao J, Chen S, Wang K, Zhang Y, Li P, Wan JB, Su H, Wang Y, Mei Z, He C. 2016, Feb 9. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. BMC Complement Altern Med. 16:58. https://doi.org/10.1186/s12906-016-1036-x; PMid:26861252 PMCid:PMC4746894
