• Спільне коріння передменструального синдрому, предменструальной мастодинії, фіброзно-кістозної мастопатії і безпліддя: дія екстрактів Вітекс священного (Vitex agnus castus) у вигляді розчину

Спільне коріння передменструального синдрому, предменструальной мастодинії, фіброзно-кістозної мастопатії і безпліддя: дія екстрактів Вітекс священного (Vitex agnus castus) у вигляді розчину

HEALTH OF WOMAN. 2017.9(125):31–40; doi 10.1186/s40816-016-0038-z

Зайдлова-Вуттке Дана, Вуттке Вольфганг
Міжнародний журнал фітомедицини і фітотерапії «Clinical Phytoscience» 2017, 3: 6

Література:
1. Halbreich U, Ben-David M, Assael M, Bornstein R. Serum-prolatic in women with premenstrual syndrome. Lancet. 1976;2:654–6.View ArticlePubMed Google Scholar. https://doi.org/10.1016/S0140-6736(76)92465-X

2. Reid RL, Yen SS. Premenstrual syndrome. Am J Obstet Gynecol. 1981;139:85–104.View ArticlePubMed Google Scholar. https://doi.org/10.1016/0002-9378(81)90417-8

3. Schulz KD, Del Pozo E, Lose KH, Kunzig HJ, Geiger W. Successful treatment of mastodynia with the prolactin inhibitor bromocryptine (CB 154). Arch Gynakol. 1975;220:83-7.View ArticlePubMedGoogle Scholar. https://doi.org/10.1007/BF00673151

4. Schwibbe MH. Multivariate relationship analysis of personality, speech and EEG. Z Exp Angew Psychol. 1983;30:133-52.View ArticlePubMed Google Scholar. PMid:6829192

5. Muhlenstedt D, Bohnet HG, Hanker JP, Schneider HP. Short luteal phase and prolactin. Int J Fertil. 1978;23:213-8.View ArticlePubMedGoogle Scholar. PMid:40896

6. del Pozo E, Wyss H, Tollis G, et al. Prolactin and deficient luteal function. Obstet Gynecol. 1979;53:282-6.View ArticlePubMedGoogle Scholar. PMid:424097

7. Wuttke W, Pitzel L, Seidlova-Wuttke D, Hinney B. LH pulses and the corpus luteum: the luteal phase deficiency LPD). Vitam Horm. 2001;63:131-58.View ArticlePubMedGoogle Scholar. https://doi.org/10.1016/S0083-6729(01)63005-X

8. van Die MD, Burger HG, Teede HJ, Bone KM. Vitex agnus-castus extracts for female reproductive disorders: a systematic review of clinical trials. Planta Med. 2013;79:562-75.View ArticlePubMedGoogle Scholar. PMid:23136064

9. Wuttke W, Jarry H, Knoke I, Pitzel L, Spiess S. Luteotropic and luteolytic effects of oxytocin in the porcine corpus luteum. Adv Exp Med Biol. 1995;395:495-506.View ArticlePubMed Google Scholar. PMid:8714006

10. Wuttke W, Duker EM, Demajo M, Mansky T, Lira S. Postnatal development of hypothalamic neurotransmitters. Monogr Neural Sci. 1983;9:225-33.View ArticlePubMedGoogle Scholar. https://doi.org/10.1159/000406896

11. Guy PL, Webster DE, Davis L, Forster RL. Pests of non-indigenous organisms: Hidden costs of introduction. Trends Ecol Evol. 1998;13:111–6.View ArticlePubMed Google Scholar. https://doi.org/10.1016/S0169-5347(97)83354-X

12. Jarry H, Spengler B, Porzel A, et al. Evidence for estrogen receptor beta-selective activity of Vitex agnus-castus and isolated flavones. Planta Med. 2003;69:945-7.View ArticlePubMed Google Scholar. https://doi.org/10.1055/s-2003-45105; PMid:14648399

13. Liu J, Burdette JE, Sun Y, et al. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry). Phytomedicine. 2004;11:18–23.View ArticlePubMedGoogle Scholar. https://doi.org/10.1078/0944-7113-00331; PMid:14974442

14. Powers CN, Setzer WN. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements. In Silico Pharmacol. 2015;3:4.View ArticlePubMedPubMed CentralGoogle Scholar. https://doi.org/10.1186/s40203-015-0008-z; PMid:25878948 PMCid:PMC4397262

15. Jarry H, Leonhardt S, Gorkow C, Wuttke W. In vitro prolactin but not LH and FSH release is inhibited by compounds in extracts of Agnus castus: direct evidence for a dopaminergic principle by the dopamine receptor assay. Exp Clin Endocrinol. 1994;102:448-54. View ArticlePubMedGoogle Scholar. https://doi.org/10.1055/s-0029-1211317; PMid:7890021

16. Meier B, Berger D, Hoberg E, Sticher O, Schaffner W. Pharmacological activities of Vitex agnus-castus extracts in vitro. Phytomedicine. 2000;7:373-81.View ArticlePubMedGoogle Scholar. https://doi.org/10.1016/S0944-7113(00)80058-6

17. Wuttke W, Jarry H, Christoffel V, Spengler B, Seidlova-Wuttke D. Chaste tree (Vitex agnus-castus)-pharmacology and clinical indications. Phytomedicine. 2003;10:348-57.View ArticlePubMed Google Scholar. https://doi.org/10.1078/094471103322004866; PMid:12809367

18. Chen SN, Friesen JB, Webster D, et al. Phytoconstituents from Vitex agnus-castus fruits. Fitoterapia. 2011;82:528-33.View ArticlePubMedGoogle Scholar. https://doi.org/10.1016/j.fitote.2010.12.003; PMid:21163339 PMCid:PMC3081944

19. Webster DE, He Y, Chen SN, et al. Opioidergic mechanisms underlying the actions of Vitex agnus-castus L. Biochem Pharmacol. 2011;81:170-7.View ArticlePubMedGoogle Scholar. https://doi.org/10.1016/j.bcp.2010.09.013; PMid:20854795 PMCid:PMC2993511

20. Milewicz A, Gejdel E, Sworen H, et al. Vitex agnus castus extract in the treatment of luteal phase defects due to latent hyperprolactinemia. Results of a randomized placebo-controlled double-blind study. Arzneimittelforschung. 1993;43:752–6.PubMedGoogle Scholar. PMid:8369008

21. Mayerhofer A, Fritz S, Grunert R, et al. D1-Receptor, DARPP-32, and PP-1 in the primate corpus luteum and luteinized granulosa cells: evidence for phosphorylation of DARPP-32 by dopamine and human chorionic gonadotropin. J Clin Endocrinol Metab. 2000;85:4750–7.View ArticlePubMed Google Scholar. https://doi.org/10.1210/jcem.85.12.7084; PMid:11134138

22. Mayerhofer A, Hemmings Jr HC, Snyder GL, et al. Functional dopamine-1 receptors and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro. J Clin Endocrinol Metab. 1999;84:257–64.PubMedGoogle Scholar. https://doi.org/10.1210/jcem.84.1.5378; https://doi.org/10.1210/jc.84.1.257; PMid:9920093

23. Rey-Ares V, Lazarov N, Berg D, et al. Dopamine receptor repertoire of human granulosa cells. Reprod Biol Endocrinol. 2007;5:40.View ArticlePubMedPubMed CentralGoogle Scholar. https://doi.org/10.1186/1477-7827-5-40; PMid:17961240 PMCid:PMC2206026

24. Vorherr H. Fibrocystic breast disease: pathophysiology, pathomorphology, clinical picture, and management. Am J Obstet Gynecol. 1986;154:161–79.View ArticlePubMed Google Scholar. https://doi.org/10.1016/0002-9378(86)90421-7

25. Murta EF, de Freitas MM, Velludo MA. Histologic changes in fibrocystic breast disease before and after treatment with bromocriptine. Rev Paul Med. 1992;110:251–6.PubMedGoogle Scholar. PMid:1341021

26. Courtillot C, Plu-Bureau G, Binart N, et al. Benign breast diseases. J Mammary Gland Biol Neoplasia. 2005;10:325-35.View ArticlePubMed Google Scholar. https://doi.org/10.1007/s10911-006-9006-4; PMid:16900392

27. Warner E, Lockwood G, Tritchler D, Boyd NF. The risk of breast cancer associated with mammographic parenchymal patterns: a meta-analysis of the published literature to examine the effect of method of classification. Cancer Detect Prev. 1992;16:67–72.PubMedGoogle Scholar. PMid:1532349

28. Ho JM, Jafferjee N, Covarrubias GM, Ghesani M, Handler B. Dense breasts: a review of reporting legislation and available supplemental screening options. AJR Am J Roentgenol. 2014;203:449–56.View ArticlePubMed Google Scholar. https://doi.org/10.2214/AJR.13.11969; PMid:25055284

29. Walker K, Fletcher O, Johnson N, et al. Premenopausal mammographic density in relation to cyclic variations in endogenous sex hormone levels, prolactin, and insulin-like growth factors. Cancer Res. 2009;69:6490–9.View ArticlePubMedGoogle Scholar. https://doi.org/10.1158/0008-5472.CAN-09-0280; PMid:19679547

30. Laud K, Gourdou I, Belair L, Peyrat JP, Djiane J. Characterization and modulation of a prolactin receptor mRNA isoform in normal and tumoral human breast tissues. Int J Cancer. 2000;85:771–6.View ArticlePubMed Google Scholar. https://doi.org/10.1002/(SICI)1097-0215(20000315)85:6<771::AID-IJC5>3.0.CO;2-Y

31. Courtillot C, Chakhtoura Z, Bogorad R, et al. Characterization of two constitutively active prolactin receptor variants in a cohort of 95 women with multiple breast fibroadenomas. J Clin Endocrinol Metab. 2010;95:271–9. View ArticlePub MedGoogle Scholar. https://doi.org/10.1210/jc.2009-1494; PMid:19897676

32. Sirotkovic-Skerlev M, Cacev T, Krizanac S, et al. TNF alpha promoter polymorphisms analysis in benign and malignant breast lesions. Exp Mol Pathol. 2007;83:54–8.View ArticlePubMedGoogle Scholar. https://doi.org/10.1016/j.yexmp.2006.11.004; PMid:17234183

33. Bhargav PR, Mishra A, Agarwal G, et al. Prevalence of hypothyroidism in benign breast disorders and effect of thyroxine replacement on the clinical outcome. World J Surg. 2009;33:2087–93.View ArticlePub MedGoogle Scholar. https://doi.org/10.1007/s00268-009-0143-y; PMid:19641955

34. Bazyka DA, Lytvynenko O, Bugaistov S. Structural and functional thyroid abnormalities in patients with dyshormonal breast disorders and tumors. Probl Radiac Med Radiobiol. 2013;18:156–68.Google Scholar

35. Adashi EY, Katz E. Diagnostic work-up of hyperprolactinemic disorders. Gynecol Endocrinol. 1988;2:339–57.View Article Pub Med Google Scholar. https://doi.org/10.3109/09513598809107657

36. McCann SM, Ono N, Khorram O, Kentroti S, Aguila C. The role of brain peptides in neuroimmunomodulation. Ann N Y Acad Sci. 1987;496:173–81.View Article PubMed Google Scholar. https://doi.org/10.1111/j.1749-6632.1987.tb35763.x; PMid:3474967

37. Reichlin S. Neuroendocrinology of the pituitary gland. Toxicol Pathol. 1989;17:250–5.View ArticlePubMed Google Scholar. https://doi.org/10.1177/019262338901700203; PMid:2675278

38. Korbonits M, Morris DG, Nanzer A, Kola B, Grossman AB. Role of regulatory factors in pituitary tumour formation. Front Horm Res. 2004;32:63–95.View ArticlePubMed Google Scholar. https://doi.org/10.1159/000079038; PMid:15281340

39. Fernandez I, Touraine P, Goffin V. Prolactin and human tumourogenesis. J Neuroendocrinol. 2010;22:771–7. PubMed Google Scholar. PMid:20456598

40. Meites J, Lu KH, Wuttke W, et al. Recent studies on functions and control of prolactin secretion in rats. Recent Prog Horm Res. 1972;28:471-526.View ArticlePubMedGoogle Scholar. PMid:4569231

41. Damiano JS, Wasserman E. Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res. 2013;19:1644-50.View ArticlePubMed Google Scholar. https://doi.org/10.1158/1078-0432.CCR-12-0138; PMid:23515410

42. Touraine P, Martini JF, Zafrani B, et al. Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab. 1998;83:667-74.View ArticlePubMed Google Scholar. https://doi.org/10.1210/jcem.83.2.4564; PMid:9467590

43. Tworoger SS, Eliassen AH, Sluss P, Hankinson SE. A prospective study of plasma prolactin concentrations and risk of premenopausal and postmenopausal breast cancer. J Clin Oncol. 2007;25:1482-8.View ArticlePubMed Google Scholar. https://doi.org/10.1200/JCO.2006.07.6356; PMid:17372279

44. Tikk K, Sookthai D, Johnson T, et al. Circulating prolactin and breast cancer risk among pre- and postmenopausal women in the EPIC cohort. Ann Oncol. 2014;25:1422-8.View ArticlePubMed Google Scholar. https://doi.org/10.1093/annonc/mdu150; PMid:24718887

45. Gumenyuk, EG. Some problems of premenstrual syndrome and alternative therapy. Jounal of Obstetrics and gynecological diseases. 2010;:38-45.

46. Binita G, Suprava P, Mainak C, Koner BC, Alpana S. Correlation of prolactin and thyroid hormone concentration with menstrual patterns in infertile women. J Reprod Infertil. 2009;10:207-12.View ArticlePubMedGoogle Scholar. PMid:23926470