• Розвиток імунної відповіді при пневмонії, викликаної pseudomonas aeruginosa (частина 3)
ua До змісту Повний текст статті

Розвиток імунної відповіді при пневмонії, викликаної pseudomonas aeruginosa (частина 3)

SOVREMENNAYA PEDIATRIYA.2017.1(81):52-63; doi 10.15574/SP.2017.81.52

Абатуров О. Є., Нікуліна А. О.
ДЗ «Дніпропетровська медична академія МОЗ України», м. Дніпро, Україна

У статті, ґрунтуючись на даних літератури, продемонстрована роль клітинних реакцій у розвитку імунної відповіді при пневмонії, викликаній Pseudomonas aeruginosa. Описано механізми рекрутування та активації прозапальних імуноцитів, процеси бактеріального кілінгу, які забезпечують ефективний саногенез синьогнійної інфекції та запобігають формуванню хронічного запального процесу.

Ключові слова: пневмонія, Pseudomonas aeruginosa, бактеріальний кілінг, імуноцити.

Література

1. Абатуров А. Е. Значение металлосвязывающих белков в неспецифической защите респираторного тракта. 1. Лактоферрин / А. Е. Абатуров // Здоровье ребенка. — 2009. — № 4 (19). — С. 125—128.

2. Абатуров А. Е. Роль прооксидантной и антиоксидантной систем при воспалительных заболеваниях органов дыхания / А. Е. Абатуров, А. П. Волосовец, Е. И. Юлиш. — Харьков : Планета-Принт, 2013. — 496 с.

3. Дефензины и дефензив-зависимые заболевания / А. Е. Абатуров, О. Н. Герасименко, И. Л. Высочина, Н. Ю. Завгородняя. — Одесса : Издательство ВМВ, 2011. — 265 с.

4. Acidification-dependent activation of CD1d-restricted natural killer T cells is intact in cystic fibrosis / S. E. Rzemieniak, A. F. Hirschfeld, R. E. Victor [et al.] // Immunology. — 2010. — Vol. 130 (2). — P. 288—95. https://doi.org/10.1111/j.1365-2567.2009.03234.x.

5. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice / D. S. Damlund, L. Christophersen, P. О. Jensen [et al.] // APMIS. — 2016. — Vol. 124 (6). — P. 500—7. https://doi.org/10.1111/apm.12530.

6. Aggarwal N. R. Diverse macrophage populations mediate acute lung inflammation and resolution / N. R. Aggarwal, L. S. King, F. R. D'Alessio // Am. J. Physiol. Lung Cell Mol Physiol. — 2014. — Apr. 15. — Vol. 306 (8). — P. 709—25. https://doi.org/10.1152/ajplung.00341.2013.

7. Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection / S. Kannan, H. Huang, D. Seeger [et al.] // PLoS One. — 2009. — Vol. 4 (3). — P. 4891. https://doi.org/10.1371/journal.pone.0004891.

8. Ammons M. C. Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic / M. C. Ammons, V. Copiѐ // Biofouling. — 2013. — Vol. 29 (4). — P. 443—55. https://doi.org/10.1080/08927014.2013.773317.

9. Andrews T. Infections in patients with inherited defects in phagocytic function / T. Andrews, K. E. Sullivan // Clin. Microbiol. Rev. — 2003. — Vol. 16 (4). — P. 597—621. https://doi.org/10.1128/CMR.16.4.597-621.2003.

10. Antimicrobial activity of immobilized lactoferrin and lactoferricin / R. Chen, N. Cole, D. Dutta [et al.] // J. Biomed. Mater. Res. B Appl Biomater. — 2016. — Oct 19. https://doi.org/10.1002/jbm.b.33804.

11. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms / S. Sanchez-Gomez, R. Ferrer-Espada, P. S. Stewart [et al.] // BMC Microbiol. — 2015. — Jul. 7. — Vol. 15. — P. 137. https://doi.org/10.1186/s12866-015-0473-x.

12. Antimicrobial Properties of an Immunomodulator — 15 kDa Human Granulysin / H. M. Wei, L. C. Lin, C. F. Wang [et al.] // PLoS One. — 2016. — Jun 8. — Vol. 11 (6):e0156321. https://doi.org/10.1371/journal.pone.0156321.

13. Bayes H. K. IL-17 is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa / H. K. Bayes, N. D. Ritchie, T. J. Evans // Infect Immun. — 2016. — Oct. 3. pii: IAI.00717—16.

14. Bedard K. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology / K. Bedard, K. H. Krause // Physiol. Rev. — 2007. — Vol. 87 (1). — P. 245—313. https://doi.org/10.1152/physrev.00044.2005.

15. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update / C. Bogdan // Trends Immunol. — 2015. — Vol. 36 (3). — P. 161—78. https://doi.org/10.1016/j.it.2015.01.003.

16. Bystrom J. Harnessing the Therapeutic Potential of Th17 Cells / J. Bystrom, T. E. Taher, M. S. Muhyaddin // Mediators Inflamm. — 2015. — 2015: 205156. https://doi.org/10.1155/2015/205156.

17. Cd1d-dependent regulation of bacterial colonization in the intestine of mice / E. E. Nieuwenhuis, T. Matsumoto, D. Lindenbergh [et al.] // J. Clin. Invest. — 2009. — Vol. 119 (5). — P. 1241—50. https://doi.org/10.1172/JCI36509.

18. Cheung D. O. Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa / D. O. Cheung, K. Halsey, D. P. Speert // Infect. Immun. — 2000. — Vol. 68 (8). — P. 4585—92. https://doi.org/10.1128/IAI.68.8.4585-4592.2000; PMid:10899859 PMCid:PMC98382.

19. Chung J. W. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis / J. W. Chung, Z. H. Piao, S. R. Yoon // PLoS Pathog. — 2009. — Vol. 5 (8). — e1000561. https://doi.org/10.1371/journal.ppat.1000561.

20. Cohen N. R. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity / N. R. Cohen, S. Garg, M. B. Brenner // Adv. Immunol. — 2009. — Vol. 102. — P. 1—94. https://doi.org/10.1016/S0065-2776(09)01201-2.

21. Cortjens B. Neutrophil Extracellular Traps in Respiratory Disease: guided anti-microbial traps or toxic webs? / B. Cortjens, J. B. van Woensel, R. A. Bem // Paediatr Respir Rev. — 2016. — Jun 29. pii: S1526-0542(16)30060-4. https://doi.org/10.1016/j.prrv.2016.03.007.

22. Cowland J. B. Granulopoiesis and granules of human neutrophils / J. B. Cowland, N. Borregaard // Immunol Rev. — 2016. — Vol. 273 (1). — P. 11—28. https://doi.org/10.1111/imr.12440.

23. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia / W. C. Tsai, R. M. Strieter, B. Mehrad [et al.] // Infect. Immun. — 2000. — Vol. 68 (7). — P. 4289—96. https://doi.org/10.1128/IAI.68.7.4289-4296.2000; PMid:10858247 PMCid:PMC101748.

24. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense / M. Carevic, H. Oz, K. Fuchs [et al.] // J. Innate Immun. — 2016. — Vol. 8 (4). — P. 362—73. https://doi.org/10.1159/000444125.

25. DeCoursey T. E. Voltage_gated proton channels find their dream job managing the respiratory burst in phagocytes / T. E. DeCoursey // Physiology (Bethesda). — 2010. — Vol. 25 (1). — P. 27—40. https://doi.org/10.1152/physiol.00039.2009.

26. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction / F. Pene, B. Zuber, E. Courtine [et al.] // J. Immunol. — 2008. — Dec. 15. — Vol. 181 (12). — P. 8513—20. https://doi.org/10.4049/jimmunol.181.12.8513.

27. Depletion of natural CD4+CD25+ T regulatory cells with anti-CD25 anti-body does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice / S. O. Carrigan, Y. J. Yang, T. Issekutz [et al.] // Immunobiology. — 2009. — Vol. 214 (3). — P. 211—22. https://doi.org/10.1016/j.imbio.2008.07.027.

28. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model / A. Broquet, A. Roquilly, C. Jacqueline [et al.] // Crit Care Med. — 2014. — Vol. 42 (6). — P. 441—50. https://doi.org/10.1097/CCM.0000000000000311.

29. Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice / S. Satoh, K. Oishi, A. Iwagaki [et al.] // Clin. Exp. Immunol. — 2001. —Vol. 126 (2). — P. 266—73. https://doi.org/10.1046/j.1365-2249.2001.01656.x.

30. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity / Q. Shan, M. Dwyer, S. Rahman, M. Gadjeva // Infect Immun. — 2014. — Vol. 82 (10). — P. 4135—43. https://doi.org/10.1128/IAI.02169-14.

31. DNA is an antimicrobial component of neutrophil extracellular traps / T. W. Halverson, M. Wilton, K. K. Poon [et al.] // PLoS Pathog. — 2015. — Jan 15. — Vol. 11 (1):e1004593. https://doi.org/10.1371/journal.ppat.1004593.

32. Effects of inhaled nitric oxide in a rat model of Pseudomonas aeruginosa pneumonia / K. E. Webert, J. Vanderzwan, M. Duggan [et al.] // Crit Care Med. — 2000. — Vol. 28 (7). — P. 2397—405. https://doi.org/10.1097/00003246-200007000-00035; PMid:10921570

33. Elevated BALF concentrations of alpha- and beta-defensins in patients with pulmonary alveolar proteinosis / H. Mukae, H. Ishimoto, S. Yanagi [et al.] // Respir Med. — 2007. — Vol. 101 (4). — P. 715—21. https://doi.org/10.1016/j.rmed.2006.08.018..

34. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia / A. M. Manicone, T. P. Birkland, M. Lin [et al.] // J. Immunol. — 2009. — Mar 15. — Vol. 182 (6). — P. 3866—76. doi: 10.4049/jimmunol. 0713949.

35. Fang F. C. Antimicrobial actions of reactive oxygen species / F. C. Fang // MBio. — 2011. — Sep. 6. — Vol. 2 (5). pii: e00141—11. https://doi.org/10.1128/mBio.00141-11.

36. Fang F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies / F. C. Fang // Nat Rev. Microbiol. — 2004. — Vol. 2 (10). — P. 820—32. https://doi.org/10.1038/nrmicro1004.

37. Flannagan R. S. The cell biology of phagocytosis / R. S. Flannagan, V. Jaumouill?, S. Grinstein // Annu Rev. Pathol. — 2012. — Vol. 7. — P. 61—98. https://doi.org/10.1146/annurev-pathol-011811-132445.

38. Ginhoux F. Fate PPAR-titioning: PPAR-γ «instructs» alveolar macrophage development / F. Ginhoux // Nat Immunol. — 2014. — Vol. 15 (11). — P. 1005—7. https://doi.org/10.1038/ni.3011.

39. Hussell T. Alveolar macrophages: plasticity in a tissue-specific context / T. Hussell, T. J. Bell // Nat Rev. Immunol. — 2014. — Vol. 14 (2). — P. 81—93. https://doi.org/10.1038/nri3600.

40. Identification of a Human Natural Killer Cell Lineage-Restricted Progenitor in Fetal and Adult Tissues / V. M. Renoux, A. Zriwil, C. Peitzsch [et al.] // Immunity. — 2015. — Aug. 18. — Vol. 43 (2). — P. 394—407. https://doi.org/10.1016/j.immuni.2015.07.011.

41. IL-17 is a critical component of vaccine-induced protection against lung infection by lipopolysaccharide-heterologous strains of Pseudomonas aeruginosa / G. P. Priebe, R. L. Walsh, T. A. Cederroth [et al.] // J. Immunol. 2008. — Oct. 1. — Vol. 181 (7). — P. 4965—75. https://doi.org/10.4049/jimmunol.181.7.4965; PMid:18802100 PMCid:PMC2597098.

42. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance/ C. A. McCaslin, D. N. Petrusca, C. Poirier [et al.] // J. Cyst Fibros. — 2015. — Vol. 14 (1). — P. 70—7. https://doi.org/10.1016/j.jcf.2014.06.009.

43. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response / C. Moser, P. O. Jensen, O. Kobayashi [et al.] // Clin. Exp. Immunol. 2002. — Vol. 127 (2). — P. 206—13. https://doi.org/10.1046/j.1365-2249.2002.01731.x.

44. Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia / A. Y. Koh, G. P. Priebe, C. Ray [et al.] // Infect. Immun. — 2009. — Vol. 77 (12). — P. 5300-10. https://doi.org/10.1128/IAI.00501-09.

45. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense / D. P. Speert, M. Bond, R. C. Woodman, J. T. Curnutte // J. Infect. Dis. — 1994. — Vol. 170 (6). — Vol. 1524—31. https://doi.org/10.1093/infdis/170.6.1524.

46. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia / C. C. Miller, C. A., Hergott M. Rohan [et al.] // J. Cyst Fibros. — 2013. — Vol. 12 (6). — P. 817—20. https://doi.org/10.1016/j.jcf.2013.01.008.

47. Innate Immune Signaling Activated by MDR Bacteria in the Airway / D. Parker, D. Ahn, T. Cohen, A. Prince // Physiol Rev. — 2016. — Vol. 96 (1). —P. 19—53. https://doi.org/10.1152/physrev.00009.2015.

48. Innate or adaptive immunity? The example of natural killer cells / E. Vivier, D. H. Raulet, A. Moretta [et al.] // Science. — 2011. — Jan 7. — Vol. 331 (6013). — P. 44—9. https://doi.org/10.1126/science.1198687.

49. Kettritz R. Neutral serine proteases of neutrophils / R. Kettritz // Immunol. Rev. — 2016. — Vol. 273 (1). — P. 232—48. https://doi.org/10.1111/imr.12441.

50. Kim Y. J. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy / Y. J. Kim, Y. H. Jun, Y. R. Kim // BMC Infect Dis. — 2014. — Mar. 24. — Vol. 14. — P. 161. https://doi.org/10.1186/1471-2334-14-161

51. Lavoie E. G. Innate immune responses to Pseudomonas aeruginosa infection / E. G. Lavoie, T. Wangdi, B. I. Kazmierczak // Microbes Infect. — 2011. —Vol. 13 (14—15). — P. 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

52. Lee W. L. Leukocyte elastase: physiological functions and role in acute lung injury / W. L. Lee, G. P. Downey // Am. J. Respir. Crit Care Med. — 2001. — Sep. 1. — Vol. 164 (5). — P. 896—904. https://doi.org/10.1164/ajrccm.164.5.2103040.

53. Lessons learned from phagocytic function studies in a large cohort of patients with recurrent infections / B. Wolach, R. Gavrieli, D. Roos, S. Berger-Achituv // J. Clin. Immunol. — 2012. — Vol. 32 (3). — P. 454—66. https://doi.org/10.1007/s10875-011-9633-4.

54. Lovewell R. R. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa / R. R. Lovewell, Y. R. Patankar, B. Berwin // Am. J. Physiol. Lung Cell Mol Physiol. — 2014. — Apr. 1. — Vol. 306 (7). — P. 591—603. https://doi.org/10.1152/ajplung.00335.2013.

55. Lu Y. Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents / Y. Lu, D. L. Slomberg, M. H. Schoenfisch // Biomaterials. — 2014. — Vol. 35 (5). — P. 1716—24. doi: 10.1016/j. biomaterials.2013.11.015.

56. Macrophage adaptation in airway inflammatory resolution / M. Kaur, T. Bell, S. Salek-Ardakani, T. Hussell // Eur. Respir. Rev. — 2015. — Vol. 24 (137). — P. 510—5. https://doi.org/10.1183/16000617.0030-2015.

57. Marrero I. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer / I. Marrero, R. Ware, V. Kumar // Front Immunol. — 2015. — Jun 17. — Vol. 6. — P. 316. https://doi.org/10.3389/fimmu.2015.00316.

58. Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection / A. Kamei, Y. S. Coutinho-Sledge, J. B. Goldberg [et al.] // Infect. Immun. — 2011. — Vol. 79 (3). — P. 1289—99. https://doi.org/10.1128/IAI.01139-10.

59. Myeloperoxidase: a front-line defender against phagocytosed microorganisms / S. J. Klebanoff, A. J. Kettle, H. Rosen [et al.] // J. Leukoc Biol. — 2013. — Vol. 93 (2). — P. 185—98. https://doi.org/10.1189/jlb.0712349.

60. Nauseef W. M. Neutrophils at work / W. M. Nauseef, N. Borregaard // Nat Immunol. — 2014. — Vol. 15 (7). — P. 602—11. https://doi.org/10.1038/ni.2921.

61. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa / T. O. Hirche, R. Benabid, G. Deslee [et al.] // J. Immunol. — 2008. — Oct. 1. — Vol. 181 (7). — P. 4945—54. https://doi.org/10.4049/jimmunol.181.7.4945.

62. Neutrophils: Between host defence, immune modulation, and tissue injury / P. Kruger, M. Saffarzadeh, A. N. Weber [et al.] // PLoS Pathog. — 2015. — Mar 12. — Vol. 11 (3). — P. 1004651. https://doi.org/10.1371/journal.ppat.1004651.

63. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation / H. Yang, M. H. Biermann, J. M. Brauner [et al.] // Front Immunol. — 2016. — Aug. 12. — Vol. 7. — P. 302. https://doi.org/10.3389/fimmu.2016.00302.

64. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection / S. C. Wesselkamper, B. L. Eppert, G. T. Motz [et al.] // J. Immunol. — 2008. — Oct. 15. — Vol. 181 (8). —P. 5481—9. https://doi.org/10.4049/jimmunol.181.8.5481; PMid:18832705 PMCid:PMC2567053.

65. NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa / T. Kinjo, M. Nakamatsu, C. Nakasone [et al.] // Microbes Infect. 2006. — Vol. 8 (12—13). — P. 2679—85. https://doi.org/10.1016/j.micinf.2006.07.016.

66. Nordenfelt P. Phagosome dynamics during phagocytosis by neutrophils / P. Nordenfelt, H. Tapper // J. Leukoc Biol. — 2011. — Vol. 90 (2). — P. 271—84. https://doi.org/10.1189/jlb.0810457.

67. Odobasic D. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase / D. Odobasic, A. R. Kitching, S. R. Holdsworth // J. Immunol. Res. — 2016. — Vol. 2016. — P. 2349817. https://doi.org/10.1155/2016/2349817.

68. Pallmer K. Recognition and Regulation of T Cells by NK Cells / K. Pallmer, A. Oxenius // Front Immunol. — 2016. — Jun 24. — Vol. 7. — P. 251. doi: 10.3389/fimmu. 2016.00251.

69. Paradoxical role of alveolar macrophage-derived granulocyte-macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation / M. N. Ballinger, L. L. Hubbard, T. R. McMillan [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2008. — Vol. 295 (1). — P. 114—22. https://doi.org/10.1152/ajplung.00309.2007.

70. Phospholipase Cγ in Toll-like receptor-mediated inflammation and innate immunity / Y. S. Bae, H. Y. Lee, Y. S. Jung [et al.] // Adv. Biol. Regul. —2016. — Sep. 27. pii: S2212—4926(16)30032-X. https://doi.org/10.1016/j.jbior.2016.09.006.

71. Porto B. N. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing? / B. N. Porto, R. T. Stein // Front Immunol. — 2016. — Aug. 15. — Vol. 7. — P. 311. https://doi.org/10.3389/fimmu.2016.00311.

72. PTEN limits alveolar macrophage function against Pseudomonas aeruginosa after bone marrow transplantation / L. L. Hubbard, C. A. Wilke, E. S. White, B. B. Moore // Am. J. Respir. Cell Mol Biol. — 2011. — Vol. 45 (5). — P. 1050—8. https://doi.org/10.1165/rcmb.2011-0079OC.

73. Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages / N. Cifani, B. Pompili, M. Anile [et al.] // PLoS One. — 2013. — Aug. 19. — Vol. 8 (8). — e71717. https://doi.org/10.1371/journal.pone.0071717.

74. Regulation of neutrophilic inflammation in lung injury induced by community–acquired pneumonia / R. Jose, A. Williams, M. Sulikowski [et al.] // Lancet. — 2015. — Feb. 26. — Vol. 385, Suppl. 1. — P. 52. https://doi.org/10.1016/S0140-6736(15)60367-1.

75. Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors / P. Subramanian, I. Mitroulis, G. Hajishengallis, T. Chavakis // Curr Opin Hematol. — 2016. — Vol. 23 (1). — P. 36—43. https://doi.org/10.1097/MOH.0000000000000198.

76. Reighard K. P. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions / K. P. Reighard, M. H. Schoenfisch // Antimicrob Agents Chemother. — 2015. — Vol. 59 (10). — P. 6506—13. https://doi.org/10.1128/AAC.01208-15.

77. Role of Myeloperoxidase in Patients with Chronic Kidney Disease / B. Kisic, D. Miric, I. Dragojevic [et al.] // Oxid Med. Cell Longev. — 2016. — Vol. 2016:1069743. https://doi.org/10.1155/2016/1069743.

78. Schoeniger A. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition / A. Schoeniger, H. Fuhrmann, J. Schumann // Peer J. — 2016. — Feb. 4. — Vol. 4. — P. 1663. https://doi.org/10.7717/peerj.1663.

79. Seillet C. Development, Homeostasis, and Heterogeneity of NK Cells and ILC1 / C. Seillet, G. Belz, N. D. Huntington // Curr Top Microbiol Immunol. — 2016. — Vol. 395. — P. 37—61. doi: 10.1007/82-2015-474.

80. Serine protease inhibitor 6-deficient mice have increased neutrophil immunity to Pseudomonas aeruginosa / M. Zhang, N. Liu, S. M. Park [et al.] // J. Immunol. — 2007. — Oct. 1. — Vol. 179 (7). — P. 4390—6. https://doi.org/10.4049/jimmunol.179.7.4390.

81. Substance P regulates natural killer cell interferon-gamma production and resistance to Pseudomonas aeruginosa infection / S. Lighvani, X. Huang, P. P. Trivedi [et al.] // Eur. J. Immunol. — 2005. — Vol. 35 (5). — P. 1567—75. https://doi.org/10.1002/eji.200425902.

82. The heterogeneity of lung macrophages in the susceptibility to disease / L. Morales-Nebreda, A. V. Misharin, H. Perlman, G. R. Budinger // Eur. Respir. Rev. — 2015. — Vol. 24 (137). — P. 505—9. https://doi.org/10.1183/16000617.0031-2015.

83. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background / P. Benoit, V. Y. Sigounas, J. L. Thompson [et al.] // Infect. Immun. — 2015. —Vol. 83 (6). — P. 2557—65. https://doi.org/10.1128/IAI.00015-15.

84. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines / P. Mazzi, E. Caveggion, J. A. Lapinet-Vera [et al.] // J. Immunol. — 2015. — Sep. 1. — Vol. 195 (5). — P. 2383—95. https://doi.org/10.4049/jimmunol.1402011.

85. Wood S. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin / S. Wood, J. Goldufsky, S. H. Shafikhani // PLoS Pathog. — 2015. — May 28. — Vol. 11 (5):e1004934. https://doi.org/10.1371/journal.ppat.1004934.

86. Yehia H. M. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa / H. M. Yehia, W. A. Hassanein, S. M. Ibraheim // Biomed Res Int. — 2015. — Vol. 2015:651464. https://doi.org/10.1155/2015/651464.

Зміст журналу Текст статті