• Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Частина 4

Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Частина 4

SOVREMENNAYA PEDIATRIYA.2017.8(88):50-58; doi 10.15574/SP.2017.88.50

Абатуров О. Є., Нікуліна А. О.
ДЗ «Дніпропетровська медична академія МОЗ України», м. Дніпро, Україна

У статті на підставі літературних джерел продемонстрована роль клітинних реакцій у розвитку імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Описано особливості клітинної реакції імунної системи у легеневій тканині під час клебсієльозної інфекції, механізми рекрутування та активації прозапальних імуноцитів, процеси бактеріального кілингу, які забезпечують ефективний саногенез при клебсієльозній пневмонії.
Ключові слова: пневмонія, Klebsiella pneumoniae, бактеріальний кліренс, імуноцити.

Література

1. A pathogenic role for the integrin CD103 in experimental allergic airways disease / V.S. Fear, S.P. Lai, G.R. Zosky [et al.] // Physiol Rep. — 2016. — Vol.4(21). pii: e13021. https://doi.org/10.14814/phy2.13021.

2. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival / E. Broug-Holub, G.B. Toews, J.F. van Iwaarden [et al.] // Infect Immun. — 1997. — Vol.65(4). — P.1139—46. PMid:9119443 PMCid:PMC175109.

3. Beaty S.R. Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation / S.R. Beaty, C.E. Rose Jr, S.S. Sung // J. Immunol. 2007. — Vol.178(3). — P.1882—95. https://doi.org/10.4049/jimmunol.178.3.1882.

4. Becher B. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation / B. Becher, S. Tugues, M. Greter // Immunity. — 2016. — Vol.45(5). — P.963—973. https://doi.org/10.1016/j.immuni.2016.10.026.

5. Belaaouaj A. Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis / A. Belaaouaj // Microbes Infect. — 2002. — Vol.4(12). — P.1259—64. https://doi.org/10.1016/S1286-4579(02)01654-4.

6. CD103(+) Dendritic Cells Control Th17 Cell Function in the Lung / T. Zelante, A.Y. Wong, T.J. Ping [et al.] // Cell Rep. — 2015. — Vol.12(11). — P.1789—801. https://doi.org/10.1016/j.celrep.2015.08.030.

7. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria / J.R. Schurr, E. Young, P. Byrne [et al.] // Infect Immun. — 2005. — Vol.73(1). — P.532—45. https://doi.org/10.1128/IAI.73.1.532-545.2005.

8. Collin M. Human dendritic cell subsets / M. Collin, N. McGovern, M. Haniffa // Immunology. 2013. — Vol.140(1). — P.22—30. https://doi.org/10.1111/imm.12117.

9. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia / X. Xu, I.D. Weiss, H.H. Zhang [et al.] // J. Immunol. — 2014. — Vol.192(4). — P.1778—86. https://doi.org/10.4049/jimmunol.1300039.

10. Cook P.C. Dendritic cells in lung immunopathology / P.C. Cook, A.S. MacDonald // Semin Immunopathol. — 2016. — Vol.38(4). — P.449—60. https://doi.org/10.1007/s00281-016-0571-3.

11. Cortez V.S. Innate lymphoid cells: new insights into function and development / V.S. Cortez, M.L. Robinette, M. Colonna // Curr Opin Immunol. — 2015. — Vol.32. — P.71—7. https://doi.org/10.1016/j.coi.2015.01.004.

12. Critical role of CCL22/CCR4 axis in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) dendritic cells / S. Hao, X. Han, D. Wang [et al.] // Immunology. — 2016. — Vol.148(2). — P.174—86. https://doi.org/10.1111/imm.12596.

13. Dendritic cell maturation and cross-presentation: timing matters! / A. Alloatti, F. Kotsias, J.G. Magalhaes, S. Amigorena // Immunol Rev. — 2016. — Vol.272(1). — P. 97—108. https://doi.org/10.1111/imr.12432.

14. Development and functional specialization of CD103+ dendritic cells / M.L. del Rio, G. Bernhardt, J.I. Rodriguez-Barbosa, R. Forster // Immunol Rev. — 2010. — Vol.234(1). — P.268—81. https://doi.org/10.1111/j.0105-2896.2009.00874.x; PMid:20193025..

15. Distinct cell death programs in monocytes regulate innate responses following challenge with common causes of invasive bacterial disease / S.J. Webster, M. Daigneault, M.A. Bewley [et al.] // J. Immunol. —2010. — Vol.185(5). — P.2968—79. https://doi.org/10.4049/jimmunol.1000805.

16. Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains / H. Xiong, R.A. Carter, I.M. Leiner [et al.] // Infect Immun. — 2015. — Vol.83(9). — P. 3418—27. https://doi.org/10.1128/IAI.00678-15.

17. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumonia / K.I. Happel, P.J. Dubin, M. Zheng [et al.] // J. Exp. Med. — 2005. — Vol.202(6). — P.761—9. https://doi.org/10.1084/jem.20050193.

18. Dominguez P.M. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation / P.M. Dominguez, C. Ardavin // Immunol Rev. — 2010. — Vol.234(1). — P. 90—104. https://doi.org/10.1111/j.0105-2896.2009.00876.x.

19. Flt3 ligand expands CD103+ dendritic cells and FoxP3+ T regulatory cells, and attenuates Crohn's-like murine ileitis/ C.B. Collins, C.M. Aherne, E.N. McNamee [et al.] // Gut. — 2012. — Vol.61(8). — P.1154—62. https://doi.org/10.1136/gutjnl-2011-300820.

20. GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro /T. Gargett, S.N. Christo, T.R. Hercus [et al.] // Clin. Transl Immunology. — 2016. — Vol.5(12):e119. https://doi.org/10.1038/cti.2016.80.

21. Granzymes A and B Regulate the Local Inflammatory Response during Klebsiella pneumoniae Pneumonia / M.I. Garcia-Laorden, I. Stroo, D.C. Blok [et al.] // J. Innate Immun. — 2016. — Vol.8(3). — P.258—68. https://doi.org/10.1159/000443401.

22. Guilliams M. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections / M. Guilliams, B.N. Lambrecht, H. Hammad // Mucosal Immunol. — 2013. — Vol.6(3). — P.464—73. https://doi.org/10.1038/mi.2013.14.

23. Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors / L. Chen, Z. Zhang, K.E. Barletta [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2013. — Vol.305(10). — P.702—11. https://doi.org/10.1152/ajplung.00194.2013.

24. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity / J.J. van Beek, M.A. Gorris, A.E. Skold [et al.] // Oncoimmunology. — 2016. — Vol.5(10):e1227902. https://doi.org/10.1080/2162402X.2016.1227902.

25. Hyperoxic Exposure of Immature Mice Increases the Inflammatory Response to Subsequent Rhinovirus Infection: Association with Danger Signals / T.X. Cui, B. Maheshwer, J.Y. Hong [et al.] // J. Immunol. — 2016. — Vol.196(11). — P.4692—705. https://doi.org/10.4049/jimmunol.1501116.

26. Identification and characterization of human pulmonary dendritic cells / I.K. Demedts, G.G. Brusselle, K.Y. Vermaelen, R.A. Pauwels // Am. J. Respir Cell Mol Biol. — 2005. — Vol.32(3). — P.177—84. https://doi.org/10.1165/rcmb.2004-0279OC; PMid:15576669..

27. Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion / S.M. Soudja, A.L. Ruiz, J.C. Marie, G. Lauvau // Immunity. — 2012. — Vol.37(3). — P.549—62. https://doi.org/10.1016/j.immuni.2012.05.029.

28. Inflammatory Th1 and Th17 in the Intestine Are Each Driven by Functionally Specialized Dendritic Cells with Distinct Requirements for MyD88 / J. Liang, H.I. Huang, F.P. Benzatti [et al.] // Cell Rep. — 2016. — Vol.17(5). — P.1330—1343. https://doi.org/10.1016/j.celrep.2016.09.091.

29. Innate Immune Signaling Activated by MDR Bacteria in the Airway / D. Parker, D. Ahn, T. Cohen, A. Prince // Physiol Rev. — 2016. — Vol.96(1). — P.19—53. https://doi.org/10.1152/physrev.00009.2015.

30. Innate Lymphocyte/Ly6C(hi) Monocyte Crosstalk Promotes Klebsiella Pneumoniae Clearance / H. Xiong, J.W. Keith, D.W. Samilo [et al.] // Cell. — 2016. — Vol.165(3). — P.679—89. https://doi.org/10.1016/j.cell.2016.03.017.

31. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals / B. Martin, K. Hirota, D.J. Cua [et al.] // Immunity. — 2009. — Vol.31(2). — P.321—30. https://doi.org/10.1016/j.immuni.2009.06.020.

32. Intrapulmonary administration of leukotriene B(4) augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice / S. Batra, S. Cai, G. Balamayooran, S. Jeyaseelan // J. Immunol. — 2012. — Vol.188(7). — P. 3458—68. https://doi.org/10.4049/jimmunol.1101985.

33. Key role for respiratory CD103(+) dendritic cells, IFN-γ, and IL-17 in protection against Streptococcus pneumoniae infection in response to α-galactosylceramide / S. Ivanov, J. Fontaine, C. Paget [et al.] // J. Infect Dis. — 2012. — Vol.206(5). — P.723—34. https://doi.org/10.1093/infdis/jis413.

34. Kim T.H. Differential roles of lung dendritic cell subsets against respiratory virus infection / T.H. Kim, H.K. Lee // Immune Netw. — 2014. — Vol.14(3). — P.128—37. doi 10.4110/in.2014.14.3.128.

35. Klebsiella pneumoniae alleviates influenza-induced acute lung injury via limiting NK cell expansion / J. Wang, F. Li, R. Sun [et al.] // J. Immunol. — 2014. — Vol.193(3). — P.1133—41. https://doi.org/10.4049/jimmunol.1303303.

36. Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells / C.H. Van Elssen, J. Vanderlocht, P.W. Frings [et al.] // Eur. J. Immunol. — 2010. — Vol.40(11). — P. 3138—49. https://doi.org/10.1002/eji.201040496.

37. Kopf M. The development and function of lung-resident macrophages and dendritic cells / M. Kopf, C. Schneider, S.P. Nobs // Nat. Immunol. — 2015. — Vol.16(1). — P.36—44. https://doi.org/10.1038/ni.3052.

38. Lodoen M.B. Natural killer cells as an initial defense against pathogens / M.B. Lodoen, L.L. Lanier // Curr Opin Immunol. — 2006. — Vol.18(4). — P.391—8. https://doi.org/10.1016/j.coi.2006.05.002.

39. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1 / T. El Rayes, R. Catena, S. Lee [et al.] // Proc Natl Acad Sci U S A. — 2015. — Vol.112(52). — P.16000—5. https://doi.org/10.1073/pnas.1507294112.

40. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection / H. Hackstein, S. Kranz, A. Lippitsch [et al.] // Respir Res. — 2013. — Vol.14. — P.91. https://doi.org/10.1186/1465-9921-14-91.

41. Morita H. Innate lymphoid cells in allergic and nonallergic inflammation / H. Morita, K. Moro, S. Koyasu // J. Allergy Clin. Immunol. — 2016. — Vol.138(5). — P. 1253—1264. https://doi.org/10.1016/j.jaci.2016.09.011.

42. Mouse lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T-cell responses/ K. Furuhashi, T. Suda, H. Hasegawa [et al.] // Am. J. Respir. Cell Mol Biol. — 2012. — Vol. 46(2). — P.165— 72. https://doi.org/10.1165/rcmb.2011-0070OC.

43. Myeloperoxidase plays critical roles in killing Klebsiella pneumoniae and inactivating neutrophil elastase: effects on host defense / Hirche T.O., Gaut J.P., Heinecke J.W., Belaaouaj A. // J. Immunol. — 2005. — Vol.174(3). — P.1557—65. https://doi.org/10.4049/jimmunol.174.3.1557.

44. Neutrophil elastase in human atherosclerotic plaques: production by macrophages / C.M. Dollery, C.A. Owen, G.K. Sukhova [et al.] // Circulation. — 2003. — Vol.107(22). — P.2829—36. https://doi.org/10.1161/01.CIR.0000072792.65250.4A.

45. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens / N. Branzk, A. Lubojemska, S.E. Hardison [et al.] // Nat. Immunol. — 2014. — Vol.15(11). — P.1017—25. https://doi.org/10.1038/ni.2987.

46. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection / R.S. Goldszmid, P. Caspar, A. Rivollier [et al.] // Immunity. —2012. — Vol.36(6). — P.1047—59. https://doi.org/10.1016/j.immuni.2012.03.026.

47. Odobasic D. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase / D. Odobasic, A.R. Kitching, S.R. Holdsworth // J. Immunol Res. — 2016. —Vol.2016:2349817. https://doi.org/10.1155/2016/2349817.

48. Paczosa M.K. Klebsiella pneumoniae: Going on the Offense with a Strong Defense / M.K. Paczosa, J. Mecsas // Microbiol Mol Biol Rev. — 2016. — Vol.80(3). — P.629—61. https://doi.org/10.1128/MMBR.00078-15.

49. Pulmonary Dendritic Cell Subsets Shape the Respiratory Syncytial Virus-Specific CD8+ T Cell Immunodominance Hierarchy in Neonates / A.M. Malloy, T.J. Ruckwardt, K.M. Morabito [et al.] // J. Immunol. — 2017. — Vol.198(1). — P.394—403. https://doi.org/10.4049/jimmunol.1600486.

50. Response to pneumococcal polysaccharide vaccine in children with asthma, and children with recurrent respiratory infections, and healthy children / A. Quezada, L. Maggi, X. Norambuena [et al.] // Allergol Immunopathol (Madr). — 2016. — Vol.44(4). — P.376—81. https://doi.org/10.1016/j.aller.2016.01.003.

51. Robinette M.L. Immune modules shared by innate lymphoid cells and T cells / M.L. Robinette, M. Colonna // J. Allergy Clin. Immunol. — 2016. — Vol.138(5). — P.1243—1251. https://doi.org/10.1016/j.jaci.2016.09.006.

52. Rosler B. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia – a new therapeutic strategy? / B. Rosler, S. Herold // Mol Cell Pediatr. — 2016. — Vol.3(1). — P.29. https://doi.org/10.1186/s40348-016-0055-5.

53. Sabado R.L. Dendritic cell-based immunotherapy / R.L. Sabado, S. Balan, N. Bhardwaj // Cell Res. — 2017. — Vol.27(1). — P. 74—95. https://doi.org/10.1038/cr.2016.157.

54. Schlitzer A. Organization of the mouse and human DC network / A. Schlitzer, F. Ginhoux // Curr Opin Immunol. — 2014. — Vol.26. — P.90—9. https://doi.org/10.1016/j.coi.2013.11.002.

55. Sprangers S. Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells / S. Sprangers, T.J. de Vries, V. Everts // J. Immunol. Res. — 2016. — Vol.2016. — P.1475435. https://doi.org/10.1155/2016/1475435.

56. STAT6 Signaling Attenuates Interleukin-17-Producing γδ T Cells during Acute Klebsiella pneumoniae Infection / M.H. Bloodworth, D.C. Newcomb, D.E. Dulek [et al.] // Infect. Immun. —

2016. — Vol.84(5). — P.1548—55. https://doi.org/10.1128/IAI.00646-15.

57. Sutton C.E. IL-17-producing γδ T cells and innate lymphoid cells / C.E. Sutton, L.A. Mielke, K.H. Mills // Eur. J. Immunol. — 2012. — Vol.42(9). — P.2221—31. https://doi.org/10.1002/eji.201242569.

58. Tait Wojno E.D. Emerging concepts and future challenges in innate lymphoid cell biology / E.D. Tait Wojno, D. Artis // J. Exp. Med. — 2016. — Vol.213(11). — P.2229—2248. https://doi.org/10.1084/jem.20160525.

59. The Complement Inhibitor Factor H Generates an Anti-Inflammatory and Tolerogenic State in Monocyte-Derived Dendritic Cells / R. Olivar, A. Luque, S. Cardenas-Brito [et al.] // J. Immunol. 2016. — Vol.196(10). — P.4274—90. https://doi.org/10.4049/jimmunol.1500455.

60. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting / M. Merad, P. Sathe, J. Helft [et al.] // Annu Rev Immunol. —2013. — Vol.31. — P.563—604. https://doi.org/10.1146/annurev-immunol-020711-074950.

61. Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection / Y. Zhao, T.F. Olonisakin, Z. Xiong [et al.] // Mucosal Immunol. — 2015. — Vol.8(4). — P.896—905. https://doi.org/10.1038/mi.2014.120.

62. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction / K. Chen, J.M. Wang, R. Yuan [et al.] // Int. Immunopharmacol. — 2016. — Vol.34. — P.1—15. https://doi.org/10.1016/j.intimp.2016.02.007.

63. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia / L.R. Standiford, T.J. Standiford, M.J. Newstead [et al.] // Am. J. Physiol Lung Cell Mol Physiol. — 2012. — Vol.302(5). — P.447—54. https://doi.org/10.1152/ajplung.00415.2010.

64. Two Types of Interleukin 17A-Producing γδ T Cells in Protection Against Pulmonary Infection With Klebsiella pneumoniae / T. Murakami, S. Hatano, H. Yamada [et al.] // J. Infect. Dis. — 2016. — Vol.214(11). — P.1752—1761. https://doi.org/10.1093/infdis/jiw443; PMid:27651419

65. Upham J.W. Dendritic cells in human lung disease: recent advances / J.W. Upham, Y. Xi // Chest. — 2016. — pii: S0012-3692(16)59355-6. doi 10.1016/j.chest.2016.09.030.

66. Van der Aa. E. BDCA3(+)CLEC9A(+) human dendritic cell function and development / van der Aa. E., van Montfoort N., Woltman A.M. // Semin Cell Dev Biol. — 2015. — Vol.41. — P.39—48. https://doi.org/10.1016/j.semcdb.2014.05.016.

67. Webster B. Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells / B. Webster, S. Assil, M. Dreux // J. Virol. — 2016. — Vol.90(22). — P.10050—10053. https://doi.org/10.1128/JVI.01692-16.

68. Xiong H. Monocytes and infection: modulator, messenger and effector / H. Xiong, E.G. Pamer // Immunobiology. — 2015. — Vol.220(2). — P.210—4. https://doi.org/10.1016/j.imbio.2014.08.007.

69. Zhang Z. Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses / Z. Zhang, F.S. Wang // Cell Mol Immunol. — 2005. — Vol.2(6). — P.411—7. PMid:16426490.