• Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniaе. Частина 3

Розвиток імунної відповіді при пневмонії, викликаній Klebsiella pneumoniaе. Частина 3

SOVREMENNAYA PEDIATRIYA.2017.7(87):53-63; doi 10.15574/SP.2017.87.53

Абатуров О. Є., Нікуліна А. О.
ДЗ «Дніпропетровська медична академія МОЗ України», м. Дніпро, Україна

У даній статті на підставі літературних даних висвітлено роль хемокінів і дефензинів у розвитку імунної відповіді при пневмонії, викликаній Klebsiella pneumoniae. Наведено відомості про значення хемокінових рецепторів і клітин, що їх експресують, у забезпеченні бактеріального кліренсу. Представлені TLR-асоційовані сигнальні шляхи, які беруть участь у регуляції продукції дефензинів при клебсієльозній пневмонії.

Ключові слова: пневмонія, Klebsiella pneumoniae, хемокіни, дефензини.

Література

1. Дефензины и дефензин-зависимые заболевания / А.Е. Абатуров, О.Н. Герасименко, И.Л. Высочина, Н.Ю. Завгородняя. — Одесса: ВМВ, 2011. — С. 265.

2. Allen S.J. Chemokine: receptor structure, interactions, and antagonism / S.J. Allen, S.E. Crown, T.M. Handel // Annu Rev. Immunol. — 2007. — Vol.25. — P.787—820. doi 10.1146/annurev.immunol.24.021605.090529.

3. Allen T.C. Interleukin 8 and acute lung injury / T.C. Allen, A. Kurdowska // Arch. Pathol. Lab. Med. — 2014. — Vol.138(2). — P.266—9. https://doi.org/10.5858/arpa.2013-0182-RA.

4. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner / D.E. Dulek, D.C. Newcomb, K. Goleniewska [et al.] // Infect Immun. — 2014. — Vol.82(9). — P.3723—39. https://doi.org/10.1128/IAI.00035-14.

5. Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection / H. Gollwitzer, Y. Dombrowski, P.M. Prodinger [et al.] // J. Bone Joint Surg Am. — 2013. —Vol.95(7). — P.644—51. https://doi.org/10.2106/JBJS.L.00205.

6. Antimicrobial potentials and structural disorder of human and animal defensins / E.H. Mattar, H.A. Almehdar, H.A. Yacoub [et al.] // Cytokine Growth Factor Rev. — 2016. — Vol.28. — P.95—111. https://doi.org/10.1016/j.cytogfr.2015.11.002.

7. Bhatia M. Role of chemokines in the pathogenesis of acute lung injury / M. Bhatia, R.L. Zemans, S. Jeyaseelan // Am. J. Respir. Cell Mol. Biol. — 2012. — Vol.46(5). — P.566—72. https://doi.org/10.1165/rcmb.2011-0392TR.

8. Bone marrow mesenchymal stem and progenitor cells induce monocyteemigration in response to circulating toll-like receptor ligands / C. Shi, T. Jia, S. Mendez-Ferrer [et al.] // Immunity. — 2011. — Vol.34(4). — P.590—601. https://doi.org/10.1016/j.immuni.2011.02.016.

9. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection / M.S. Hielpos, M.C. Ferrero, A.G. Fernandez [et al.] // PLoS One. —2015. — Vol.10(10):e0140408. https://doi.org/10.1371/journal.pone.0140408.

10. CCR2 Regulates Inflammatory Cell Accumulation in the Lung and Tissue Injury Following Ozone Exposure / M. Francis, A. Groves, R. Sun [et al.] // Toxicol. Sci. — 2016. — Nov. 11. pii: kfw226. PMID: 27837169.

11. Clinical Association of Chemokine (C-X-C motif) Ligand 1 (CXCL1) with Interstitial Pneumonia with Autoimmune Features (IPAF) / M. Liang, Z Jiang., Q. Huang [et al.] // Sci Rep. — 2016. — Vol.6. — P.38949. https://doi.org/10.1038/srep38949.

12. Cole J.N. Bacterial Evasion of Host Antimicrobial Peptide Defenses / J.N. Cole, V. Nizet // Microbiol Spectr. — 2016. — Vol.4(1). https://doi.org/10.1128/microbiolspec.VMBF-0006-2015.

13. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation / A. Planaguma, T. Domenech, M. Pont [et al.] // Pulm. Pharmacol. Ther. — 2015. — Vol.34. — P.37—45. https://doi.org/10.1016/j.pupt.2015.08.002.

14. CXCL1 regulates pulmonary host defense to Klebsiella Infection via CXCL2, CXCL5, NF-kappaB, and MAPKs / S. Cai, S. Batra, S.A. Lira [et al.] // J. Immunol. — 2010. — Vol.185(10). — P.6214—25. https://doi.org/10.4049/jimmunol.0903843.

15. CXCR1/CXCR2 antagonism is effective in pulmonary defense against Klebsiella pneumoniae infection / J. Wei, J. Peng, B. Wang [et al.] // Biomed. Res. Int. — 2013. — Vol. 2013: 720975. https://doi.org/10.1155/2013/720975.

16. CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks lung inflammation in swine barn dust-instilled mice / D. Schneberger, J.R. Gordon, J.M. DeVasure [et al.] // Pulm. Pharmacol Ther. — 2015. — Vol.31. — P.55—62. https://doi.org/10.1016/j.pupt.2015.02.002.

17. CXCR3 ligands as clinical markers for pulmonary tuberculosis / K. Lee, W. Chung, Y. Jung [et al.] // Int. J. Tuberc Lung Dis. — 2015. — Vol.19(2). — P.191—9. https://doi.org/10.5588/ijtld.14.0525.

18. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production / Chalifour A., Jeannin P., Gauchat J.F. [et al.] // Blood. — 2004. —Vol.104(6). — P.1778—83. https://doi.org/10.1182/blood-2003-08-2820.

19. Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains / H. Xiong, R.A. Carter, I.M. Leiner [et al.] // Infect. Immun. — 2015. — Vol.83(9). — P.3418—27. https://doi.org/10.1128/IAI.00678-15.

20. Fleischmann J. Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages / J. Fleischmann, M.E. Selsted, R.I. Lehrer // Diagn Microbiol Infect Dis. — 1985. — Vol.3(3). — P.233—42. https://doi.org/10.1016/0732-8893(85)90035-5.

21. Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors / M. Szpakowska, V. Fievez, K. Arumugan [et al.] // Biochem Pharmacol. — 2012. —Vol.84(10). — P.1366—80. https://doi.org/10.1016/j.bcp.2012.08.008.

22. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis/ J.U. Lee, H.S. Cheong, E.Y. Shim [et al.] // Respir. Res. — 2017. — Vol.18(1). — P.3. https://doi.org/10.1186/s12931-016-0493-6.

23. Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils / S.S. Cheng, J.J. Lai, N.W. Lukacs, S.L. Kunkel // J. Immunol. — 2001. — Vol.166(2). — P.1178—84. https://doi.org/10.4049/jimmunol.166.2.1178; PMid:11145699.

24. Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors / L. Chen, Z. Zhang, K.E. Barletta [et al.] // Am. J. Physiol. Lung Cell Mol. Physiol. — 2013. — Vol.305(10). — L702—11. https://doi.org/10.1152/ajplung.00194.2013.

25. Human α-defensin expression is not dependent on CCAAT/enhancer binding protein-ε in a murine model / A. Glenthoj, S. Dahl, M.T. Larsen [et al.] // PLoS One. — 2014. — Vol.9(3):e92471. https://doi.org/10.1371/journal.pone.0092471.

26. Identification of hBD-3 in respiratory tract and serum: the increase in pneumonia / H. Ishimoto, H. Mukae, Y. Date [et al.] // Eur. Respir. J. — 2006. — Vol.27(2). — P.253—60. https://doi.org/10.1183/09031936.06.00105904.

27. Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1 / M.M. Welling, P.H. Nibbering, A. Paulusma-Annema [et al.] // J. Nucl. Med. — 1999. — Vol.40(12). — P.2073—80. PMid:10616888.

28. Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine / S.C. Chen, B. Mehrad, J.C. Deng [et al.] // J. Immunol. — 2001. — Vol.166(5). — P.3362—8.

https://doi.org/10.4049/jimmunol.166.5.3362.

29. In vitro bactericidal activity of human beta-defensin 2 against nosocomial strains / J.G. Routsias, P. Karagounis, G. Parvulesku [et al.] // Peptides. — 2010. — Vol.31(9). — P.1654—60. https://doi.org/10.1016/j.peptides.2010.06.010.

30. Interferon-inducible protein 10, but not monokine induced by gamma interferon, promotes protective type 1 immunity in murine Klebsiella pneumoniae pneumonia / X. Zeng, T.A. Moore, M.W. Newstead [et al.] // Infect. Immun. — 2005. — Vol.73(12). — P.8226—36. https://doi.org/10.1128/IAI.73.12.8226-8236.2005.

31. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors / F. Bachelerie, A. Ben-Baruch, A.M. Burkhardt [et al.] // Pharmacol Rev. — 2013. — Vol.66(1). — P.1—79. https://doi.org/10.1124/pr.113.007724.

32. International union of pharmacology. XXII. Nomenclature for chemokine receptors / P.M. Murphy, M. Baggiolini, I.F. Charo [et al.] // Pharmacol Rev. — 2000. — Vol.52(1). — P.145—76. PMid:10699158.

33. Intrapulmonary administration of leukotriene B(4) augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice / S. Batra, S. Cai, G. Balamayooran, S. Jeyaseelan // J. Immunol. — 2012. — Vol.188(7). — P.3458—68. https://doi.org/10.4049/jimmunol.1101985.

34. IP-10 mediates selective mononuclear cell accumulation and activation in response to intrapulmonary transgenic expression and during adenovirus-induced pulmonary inflammation / X. Zeng, T.A. Moore, M.W. Newstead [et al.] // J. Interferon Cytokine Res. — 2005. — Vol.25(2). — P.103—12. https://doi.org/10.1089/jir.2005.25.103.

35. Jarczak J. Defensins: natural component of human innate immunity / J. Jarczak, E.M. Kosciuczuk, P. Lisowski [et al.] // Hum. Immunol. — 2013. — Vol.74(9). — P.1069—79. https://doi.org/10.1016/j.humimm.2013.05.008.

36. Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells / D. Moranta, V. Regueiro, C. March [et al.] // Infect. Immun. — 2010. —Vol.78(3). — P.1135—46. https://doi.org/10.1128/IAI.00940-09.

37. Klebsiella pneumoniae induces an inflammatory response in an in vitro model of blood-retinal barrier/ C. Motta, M. Salmeri, C.D. Anfuso [et al.] // Infect Immun. — 2014. — Vol.82(2). — P.851—63. https://doi.org/10.1128/IAI.00843-13.

38. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response / J.C. Lee, E.J. Lee, J.H. Lee [et al.] // FEMS Microbiol Lett. — 2012. — Vol.331(1). — P.17—24. https://doi.org/10.1111/j.1574-6968.2012.02549.x.

39. Lira S.A. The biology of chemokines and their receptors / S.A. Lira, G.C. Furtado // Immunol. Res. — 2012. — Vol.54(1—3). — P.111—20. https://doi.org/10.1007/s12026-012-8313-7.

40. Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice / W.C. Tsai, R.M. Strieter, J.M. Wilkowski [et al.] // J. Immunol. — 1998. — Vol.161(5). — P.2435—40. PMid:9725241.

41. Macrophage inflammatory protein 1alpha/CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection / D.M. Lindell, T.J. Standiford, P. Mancuso [et al.] // Infect Immun. — 2001. — Vol.69(10). — P.6364—9. https://doi.org/10.1128/IAI.69.10.6364-6369.2001.

42. Möllerherm H. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps / H. Mollerherm, M. von Kockritz-Blickwede, K. Branitzki-Heinemann // Front. Immunol. — 2016. — Vol.7. — P.265. https://doi.org/10.3389/fimmu.2016.00265.

43. Niyonsaba F. The role of human β-defensins in allergic diseases / F. Niyonsaba, C. Kiatsurayanon, H. Ogawa // Clin. Exp. Allergy. — 2016. — Vol.46(12). — P.1522—1530. https://doi.org/10.1111/cea.12843.

44. Palomino D.C. Chemokines and immunity / D.C. Palomino, L.C. Marti // Einstein (Sao Paulo). — 2015. — Vol.13(3). — P.469—73. https://doi.org/10.1590/S1679-45082015RB3438.

45. Parmentier M. CCR5 and HIV Infection, a View from Brussels / M. Parmentier // Front. Immunol. — 2015. — Vol.6. — P.295. https://doi.org/10.3389/fimmu.2015.00295.

46. Randolph G.J. Migration of dendritic cell subsets and their precursors / G.J. Randolph, J. Ochando, S. Partida-Sanchez // Annu. Rev. Immunol. — 2008. — Vol.26. — P.293—316. https://doi.org/10.1146/annurev.immunol.26.021607.090254.

47. Regulation of Chemokine Activity — A Focus on the Role of Dipeptidyl Peptidase IV/CD26 / M. Metzemaekers, J. Van Damme, A. Mortier, P. Proost // Front. Immunol. — 2016. — Vol.7. — P.483. https://doi.org/10.3389/fimmu.2016.00483.

48. Role of CCR2 in inflammatory conditions of the central nervous system / H.X. Chu, T.V. Arumugam, M. Gelderblom [et al.] // J. Cereb. Blood Flow Metab. — 2014. — Vol.34(9). — P.1425—9. https://doi.org/10.1038/jcbfm.2014.120.

49. Rot A. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells / A. Rot, U.H. von Andrian // Annu Rev. Immunol. — 2004. — Vol.22. — P.891—928. https://doi.org/10.1146/annurev.immunol.22.012703.104543.

50. Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium / S. Scharf, J. Zahlten, K. Szymanski [et al.] // Exp. Lung Res. — 2012. — Vol.38(2). — P.100—10. https://doi.org/10.3109/01902148.2011.652802.

51. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration / M. Gouwy, S. Struyf, J. Catusse [et al.] // J. Leukoc. Biol. — 2004. — Vol.76(1). — P.185—94. https://doi.org/10.1189/jlb.1003479.

52. Tecle T. Review: Defensins and cathelicidins in lung immunity / T. Tecle, S. Tripathi, K.L. Hartshorn // Innate Immun. — 2010. — Vol.16(3). — P.151—9. https://doi.org/10.1177/1753425910365734.

53. The CXCL8-CXCR1/2 pathways in cancer / Q. Liu, A. Li, Y. Tian [et al.] // Cytokine Growth Factor Rev. — 2016. — Vol.31. — P.61—71. https://doi.org/10.1016/j.cytogfr.2016.08.002.

54. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance /J.M. David, C. Dominguez, D.H. Hamilton, C. Palena // Vaccines (Basel). — 2016. — Vol.4(3). pii: E22. https://doi.org/10.3390/vaccines4030022.

55. TLR-mediated inflammatory response to neonatal pathogens and co-infection in neonatal immune cells / V. Sugitharini, K. Pavani, A. Prema [et al.] // Cytokine. — 2014. — Vol.69(2). — P.211—7. https://doi.org/10.1016/j.cyto.2014.06.003.

56. Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection. / Yang H., Zhang X., Geng J. [et al.] // Pediatr. Infect. Dis. J. — 2014. —Vol.33(11). — P.310—5. doi 0.1097/INF. 0000000000000395.

57. Toll-like receptor-mediated airway IL-17C enhances epithelial host defense in an autocrine/paracrine manner / H. Kusagaya, T. Fujisawa, K. Yamanaka [et al.] // Am. J. Respir. Cell Mol Biol. — 2014. — Vol.50(1). — P.30—9. https://doi.org/10.1165/rcmb.2013-0130OC.

58. Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs) / C. Alfaro, A. Teijeira, C. Onate [et al.] // Clin Cancer Res. — 2016. — Vol.22(15). — P.3924—36. https://doi.org/10.1158/1078-0432.CCR-15-2463.

59. Wang G. Human antimicrobial peptides and proteins / G. Wang // Pharmaceuticals (Basel). — 2014. — Vol.7(5). — P.545—94. https://doi.org/10.3390/ph7050545.

60. Waterer G.W. Airway defense mechanisms / G.W. Waterer//Clin. Chest Med. — 2012. — Vol.33(2). — P.199—209. https://doi.org/10.1016/j.ccm.2012.03.003.

61. Zimmermann H.W. CCR1 and CCR2 antagonists / H.W. Zimmermann, V. Sterzer, H. Sahin // Curr Top Med Chem. — 2014. — Vol.14(13).