• Современный взгляд на большие акушерские синдромы (Обзор иностранной литературы)
ru К содержанию

Современный взгляд на большие акушерские синдромы (Обзор иностранной литературы)

HEALTH OF WOMAN. 2019.2(138): 96–103; doi 10.15574/HW.2019.138.96

Романенко Т. Г. , Мицода Р. М. , Бобик Ю. Ю. , Лемиш Н. Ю.
Национальная медицинская академия последипломного образования имени П.Л. Шупика, г. Киев
ФПО ГВУЗ «Ужгородский национальный университет»

В статье представлен обзор литературы по вопросам этиологии, патогенеза и возможных методов профилактики больших акушерских синдромов. Показано, что в их основе лежит дефективная глубокая плацентация вследствие отсутствия либо частичной трансформации, а также обструкции спиральных артерий децидуально-миометриального интерфейса, обусловленная гормональными причинами. Перспективным направлением профилактики развития больших акушерских синдромов является применение препаратов, способных оказывать модулирующий эффект на указанные факторы.

Ключевые слова: большие акушерские синдромы, дефективная глубокая плацентация, децидуально-миометриальный интерфейс, спиральные артерии, оксидативный стресс, децидуальные иммунные клетки, преимплантационный фактор, прогестерон-индуцированный блокирующий фактор, прогестерон, дидрогестерон.

СПИСОК ЛИТЕРАТУРЫ

1. Barker DJ. (1998). In utero programming of chronic disease. Clin Sci. 95:115–128. https://doi.org/10.1042/cs0950115; PMid:9680492

2. Lapidus АМ. (1999). Effects of preeclampsia on the mother, fetus and child. Gynaecology Forum. 4(1). URL – http://www.obgyn.net/pregnancy-and-birth/effects-preeclampsia-mother-fetus-and-child

3. Crispi F, Miranda J, Grataco´s E. (2018). Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. American Journal of Obstetrics & Gynecology. 218 (25): 869–879. https://doi.org/10.1016/j.ajog.2017.12.012; PMid:29422215

4. Eide MG. (2005). Norsk Epidemiologi Influences of perinatal conditions on adult body size and intellectual performance: a register-based cohort study. Norsk Epidemiologi. 15 (1): 29-40. https://doi.org/10.5324/nje.v15i1.224

5. The Great Obstetrical Syndromes: a paradigm shift. (2015). URL – https://www.kofinasperinatal.org/wpcontent/uploads/2015/03/GreatObvstetricalSyndromes_Review.pdf

6. Di Renzo GC. (2009). The Great Obstetrical Syndromes. The Journal of Maternal-Fetal & Neonatal Medicine. 22(8):633–635. https://doi.org/10.1080/14767050902866804; PMid:19736613

7. Romero R. (2009). Prenatal medicine: The child is the father of the man. J Matern Fetal Neonatal Med. 22(8):636–639. https://doi.org/10.1080/14767050902784171; PMid:19736614

 8. Haig D. (1997). Maternal-fetal interactions and MHC polymorphism. J Reprod Immunol. 35(2):101–109. https://doi.org/10.1016/S0165-0378(97)00056-9

9. Goddard KA, Tromp G, Romero R et al. (2007). Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered. 63(1):1–16. https://doi.org/10.1159/000097926; PMid:17179726

10. Parimi N, Tromp G, Kuivaniemi H et al. (2008). Analytical approaches to detect maternal/fetal genotype incompatibilities that increase risk of pre-eclampsia. BMC Med Genet. URL – http://www.biomedcentral.com/1471-2350/9/60 https://doi.org/10.1186/1471-2350-9-60; PMid:18598365 PMCid:PMC2474585

11. Romero R, Espinoza J, Kusanovic JP et al. (2006). The preterm parturition syndrome. BJOG An International Journal of Obstetrics and Gynaecology. 113 (3): 17–42. https://doi.org/10.1111/j.1471-0528.2006.01120.x; PMid:17206962

12. Schug TT, Erlebacher Leibowitz S et al. (2012). Fetal programming and environmental exposures: implications for prenatal care and preterm birth. Ann N Y Acad Sci. 1276: 37–46. https://doi.org/10.1111/nyas.12003; PMid:23278645 PMCid:PMC4154493

13. Kim YM, Chaiworapongsa T, Gomez R et al. (2002). Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol. 187(5):1137–1142. https://doi.org/10.1067/mob.2002.127720; PMid:12439491

14. Kim YM, Bujold E, Chaiworapongsa T et al. (2003). Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 189(4):1063–1069. https://doi.org/10.1067/S0002-9378(03)00838-X

15. Romero R, Mazor M, Munoz H et al. (1994). The preterm labor syndrome. Ann N Y Acad Sci. 734:414–429. https://doi.org/10.1111/j.1749-6632.1994.tb21771.x; PMid:7978942

16. Romero R, Espinoza J, Mazor M, Chaiworapongsa T. (2004). The preterm parturition syndrome. In: Critchely H, Bennett P, Thornton S, editors. Preterm Birth. London: RCOG Press: 28–60.

17. Romero R, Espinoza J, Gotsch F et al. (2006). The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome. BJOG. 113(3): 118–135. https://doi.org/10.1111/j.1471-0528.2006.01150.x; PMid:17206980

18. Mazaki-Tovi S, Romero R, Kusanovic JP et al. (2008). Visfatin/Pre-B cell colony-enhancing factor in amniotic fluid in normal pregnancy, spontaneous labor at term, preterm labor and prelabor rupture of membranes: an association with subclinical intrauterine infection in preterm parturition. J Perinat Med. 36(6):485–496. https://doi.org/10.1515/JPM.2008.084

19. Goldenberg RL, Culhane JF, Iams JD, Romero R. (2008). Epide– miology and causes of preterm birth. Lancet. 371(9606): 75–84. https://doi.org/10.1016/S0140-6736(08)60074-4

20. Taylor RN, Casal DC, Jones LA et al. (1991). Selective effects of preeclamptic sera on human endothelial cell procoagulant protein expression. Am J Obstet Gynecol. 165(6 Pt 1):1705–1710. https://doi.org/10.1016/0002-9378(91)90019-N

21. Ness RB, Roberts JM. (1996). Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 175(5):1365–1370. https://doi.org/10.1016/S0002-9378(96)70056-X

22. Broughton Pipkin F, Roberts JM. (2000). Hypertension in pregnancy. J Hum Hypertens. 14(10–11):705–724. https://doi.org/10.1038/sj.jhh.1001018; PMid:11095161

23. Witlin AG, Sibai BM. (2001). Perinatal and maternal outcome following abruption placentae. Hypertens Pregnancy. 20(2):195–203. https://doi.org/10.1081/PRG-100106969; PMid:12044330

24. Rayman MP, Barlis J, Evans RW et al. (2002). Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am J Obstet Gynecol. 187(2):412– 418. https://doi.org/10.1067/mob.2002.123895; PMid:12193935

25. Sargent IL, Germain SJ, Sacks GP et al. (2003). Trophoblast deportation and the maternal inflammatory response in preeclampsia. J Reprod Immunol. 59(2): 153–160. https://doi.org/10.1016/S0165-0378(03)00044-5

26. Sibai BM. (2004). Preeclampsia: an inflammatory syndrome? Am J Obstet Gynecol. 191(4):1061–1062. https://doi.org/10.1016/j.ajog.2004.03.042; PMid:15507921

27. Sibai B, Dekker G, Kupferminc M. (2005). Preeclampsia. Lancet. 365(9461):785–799. https://doi.org/10.1016/S0140-6736(05)17987-2

28. Roberts JM, Gammill HS. (2005). Preeclampsia: recent insights. Hypertension. 46(6):1243–1249. https://doi.org/10.1161/01.HYP.0000188408.49896.c5; PMid:16230510

29. Redman CW, Sargent IL. (2005). Latest advances in understanding preeclampsia. Science. 308(5728):1592–1594. https://doi.org/10.1126/science.1111726; PMid:15947178

30. Stella CL, Sibai BM. (2006). Preeclampsia: Diagnosis and management of the atypical presentation. J Matern Fetal Neonatal Med. 19(7):381–386. https://doi.org/10.1080/14767050600678337; PMid:16923692

31. Ness RB, Sibai BM. (2006). Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 195(1):40–49. https://doi.org/10.1016/j.ajog.2005.07.049; PMid:16813742

32. Espinoza J, Romero R, Nien JK et al. (2007). Identification of patients at risk for early onset and/or severe preeclampsia with the use of uterine artery Doppler velocimetry and placental growth factor. Am J Obstet Gynecol. 196(4):326.e1–e13. https://doi.org/10.1016/j.ajog.2006.11.002; PMid:17403407 PMCid:PMC2190731

33. Kusanovic JP, Romero R, Hassan SS et al. (2007). Maternal serum soluble CD30 is increased in normal pregnancy, but decreased in preeclampsia and small for gestational age pregnancies. J Matern Fetal Neonatal Med. 20(12): 867–878. https://doi.org/10.1080/14767050701482993; PMid:17853188 PMCid:PMC2276339

34. Romero R, Nien JK, Espinoza J et al. (2008). A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal preg– nancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 21(1):9–23. https://doi.org/10.1080/14767050701830480; PMid:18175241 PMCid:PMC2587364

35. Chaiworapongsa T, Romero R, Gotsch F et al. (2008). Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 21(1):41–52. https://doi.org/10.1080/14767050701831397; PMid:18175243

36. Erez O, Romero R, Hoppensteadt D et al. (2008). Tissue factor and its natural inhibitor in preeclampsia and SGA. J Matern Fetal Neonatal Med. 21(12):855–869. https://doi.org/10.1080/14767050802361872; PMid:19065458 PMCid:PMC3171292

37. Di Renzo GC. (2008). The role of an ‘‘anti-angiogenic state’’ in complications of pregnancy. J Matern Fetal Neonatal Med. 21(1):3–7. https://doi.org/10.1080/14767050701855081; PMid:18175240

38. Than NG, Romero R, Hillermann R et al. (2008). Prediction of preeclampsia – a workshop report. Placenta. 29(Suppl A):83–85. https://doi.org/10.1016/j.placenta.2007.10.008; PMid:18061661 PMCid:PMC2581617

39. Reddy A, Suri S, Sargent IL et al. (2009). Maternal circulating levels of activin A, inhibin A, sFlt-1 and endoglin at parturition in normal pregnancy and pre– eclampsia. PLoS One. 4(2):e4453. https://doi.org/10.1371/journal.pone.0004453; PMid:19412349 PMCid:PMC2675175

40. Galan HL, Ferrazzi E, Hobbins JC. (2002). Intrauterine growth restriction (IUGR): biometric and Doppler assessment. Prenat Diagn. 22(4):331–337. https://doi.org/10.1002/pd.311; PMid:11981914

41. Ferrazzi E, Bozzo M, Rigano S et al. (2002). Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 19(2):140–146. https://doi.org/10.1046/j.0960-7692.2002.00627.x; PMid:11876805

42. Hoegsberg B, Gruppuso PA, Coustan DR. (1993). Hyperinsulinemia in macrosomic infants of nondiabetic mothers. Diabetes Care. 16(1):32–36. https://doi.org/10.2337/diacare.16.1.32; PMid:8422801

43. Langer O. (2000). Fetal macrosomia: etiologic factors. Clin Obstet Gynecol. 43(2):283–297. https://doi.org/10.1097/00003081-200006000-00006; PMid:10863626

44. HAPO Study Cooperative Research Group. (2002). The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Int J Gynaecol Obstet. 78(1):69–77. https://doi.org/10.1016/S0020-7292(02)00092-9

45. Lepercq J, Hauguel-De Mouzon S, Timsit J et al. (2002). Fetal macrosomia and maternal weight gain during pregnancy. Diabetes Metab. 28(4 Pt 1):323–328.

46. Ehrenberg HM, Mercer BM, Catalano PM. (2004). The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol. 191(3):964–968. https://doi.org/10.1016/j.ajog.2004.05.052; PMid:15467573

47. Yogev Y, Langer O, Xenakis EM, Rosenn B. (2005). The association between glucose challenge test, obesity and pregnancy out– come in 6390 non-diabetic women. J Matern Fetal Neonatal Med. 17(1):29–34. https://doi.org/10.1080/14767050400028766; PMid:15804783

48. Catalano PM, Thomas A, Huston-Presley L, Amini SB. (2007). Phenotype of infants of mothers with gestational diabetes. Diabetes Care. 30(Suppl 2):156–160. https://doi.org/10.2337/dc07-s209; PMid:17596465

49. Yogev Y, Langer O. (2008). Pregnancy outcome in obese and morbidly obese gestational diabetic women. Eur J Obstet Gynecol Reprod Biol. 137(1):21–26. https://doi.org/10.1016/j.ejogrb.2007.03.022; PMid:17517462

50. Metzger BE, Lowe LP, Dyer AR et al. (2008). Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 358(19):1991–2002. https://doi.org/10.1056/NEJMoa0707943; PMid:18463375

51. HAPO Study Cooperative Research Group. (2009). Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations with neonatal anthropometrics. Diabetes. 58(2): 453–459. https://doi.org/10.2337/db08-1112; PMid:19011170 PMCid:PMC2628620

52. Neri G, Moscarda M. (2009). Overgrowth syndromes: a classification. Endocr Dev. 14:53–60. https://doi.org/10.1159/000207476; PMid:19293574

53. Wigglesworth JS. (1980). Monitoring perinatal mortality. A pathophysiological approach. Lancet. 2(8196):684–686. https://doi.org/10.1016/S0140-6736(80)92717-8

54. Horn LC, Langner A, Stiehl P et al. (2004). Identification of the causes of intrauterine death during 310 consecutive autopsies. Eur J Obstet Gynecol Reprod Biol. 113(2):134–138. https://doi.org/10.1016/S0301-2115(03)00371-3

55. Gardosi J, Kady SM, McGeown P et al. (2005). Classification of stillbirth by relevant condition at death (ReCoDe): population based cohort study. BMJ. 331(7525):1113–1117. https://doi.org/10.1136/bmj.38629.587639.7C; PMid:16236774 PMCid:PMC1283273

56. Korteweg FJ, Gordijn SJ, Timmer A et al. (2006). The Tulip classification of perinatal mortality: introduction and multi-disciplinary inter-rater agreement. BJOG. 113(4):393–401. https://doi.org/10.1111/j.1471-0528.2006.00881.x; PMid:16553651

57. Espinoza J, Chaiworapongsa T, Romero R et al. (2007). Unexplained fetal death: another anti– angiogenic state. J Matern Fetal Neonatal Med. 20(7): 495–507. https://doi.org/10.1080/14767050701413022; PMid:17674262

58. Korteweg FJ, Gordijn SJ, Timmer A et al. (2008). A placental cause of intra-uterine fetal death depends on the perinatal mortality classification system used. Placenta. 29(1):71–80. https://doi.org/10.1016/j.placenta.2007.07.003; PMid:17963842

59. Gordon A, Jeffery HE. (2008). Classification and description of stillbirths in New South Wales, 2002–2004. Med J Aust. 188(11):645–648.

60. Varli IH, Petersson K, Bottinga R et al. (2008). The Stockholm classification of stillbirth. Acta Obstet Gynecol Scand. 87(11):1202–1212. https://doi.org/10.1080/00016340802460271; PMid:18951207

61.Flenady V, Froen JF, Pinar H et al. (2009). An evaluation of classification systems for stillbirth. BMC Pregnancy Childbirth. 9(1):24. https://doi.org/10.1186/1471-2393-9-24; PMid:19538759 PMCid:PMC2706223

62. Froen JF, Pinar H, Flenady V et al. (2009). Causes of death and associated conditions (CODAC) – a utilitarian approach to the classification of perinatal deaths. BMC Pregnancy Childbirth. URL – https://www.ncbi.nlm.nih.gov/pubmed/19515228 https://doi.org/10.1186/1471-2393-9-22; PMid:19515228 PMCid:PMC2706222

63. Khong TY, De Wolf F, Robertson WB, Brosens I. (1986). Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 93:1049–1059. https://doi.org/10.1111/j.1471-0528.1986.tb07830.x; PMid:3790464

64. Ball E, Bulmer JN, Ayis S et al. (2006). Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J.Pathol. 208:535–542. https://doi.org/10.1002/path.1927; PMid:16402350

65. Gabbay-Benziv R, Baschat A. (2015). Gestational diabetes as one of the “great obstetrical syndromes” – the maternal, placental, and fetal dialog. Best Practice & Research Clinical Obstetrics & Gynaecology. 28(2):150–155. https://doi.org/10.1016/j.bpobgyn.2014.04.025; PMid:25225057

66. Soto E, Romero R, Kusanovic JP et al. (2012). Late-Onset Preeclampsia Is Associated with an Imbalance of Angiogenic and Anti-Angiogenic Factors in Patients with and without Placental Lesions Consistent with Maternal Underperfusion. The Journal of Maternal-Fetal & Neonatal Medicine. 25: 498-507.  https://doi.org/10.3109/14767058.2011.591461; PMid:21867402 PMCid:PMC3401571

67. Brosens I, Pijnenborg R, Vercruysse L, Romero R. (2011). The “Great obstetrical syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 204(3): 193–201. https://doi.org/10.1016/j.ajog.2010.08.009; PMid:21094932 PMCid:PMC3369813.

68. Cetin I, Huppertz B, Burton G et al. (2011). Pregenesys pre-eclampsia markers consensus meeting: What do we require from markers, risk assessment and model systems to tailor preventive strategies? Placenta. 32 (Suppl 1):4–16. https://doi.org/10.1016/j.placenta.2010.11.022; PMid:21185077

69. Caniggia I, Winter J, Lye SJ, Post M. (2000). Oxygen and placental development during the first trimester: Implications for the pathophysiology of pre-eclampsia. Placenta. 21 (Suppl A): 25–30. https://doi.org/10.1053/plac.1999.0522

70. Jauniaux E, Hempstock J, Greenwold N, Burton GJ. (2003). Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 162:115–125. https://doi.org/10.1016/S0002-9440(10)63803-5

71. Harris JWS, Ramsey EM. (1996). The morphology of human uteroplacental vasculature. Contrib Embryol. 38:43–58.

72. Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. (2009). Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 30:473–482. https://doi.org/10.1016/j.placenta.2009.02.009; PMid:19375795 PMCid:PMC2697319

73. Schneider H. (2017). Placental dysfunction as a key element in the pathogenesis of preeclampsia. Developmental Period Medicine. XXI (4): 309–316.

74. Redman CWG, Staff AC. (2015). Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 213 (Suppl to Issue 4): S9.e1-S9. e4. https://doi.org/10.1016/j.ajog.2015.08.003; PMid:26428507

75. Redman CWG, Sargent IL. (2009). Placental stress and pre-eclampsia: A revised view. Placenta. 30 (Suppl A):38–42. https://doi.org/10.1016/j.placenta.2008.11.021; PMid:19138798

76. Chazara O, Xiong S, Moffett A. (2011). Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol. 90:703–716. https://doi.org/10.1189/jlb.0511227; PMid:21873457

77. Milman N. (2011). Anemia – still a major health problem in many parts of the world! Ann Hematol. 90:369–377. https://doi.org/10.1007/s00277-010-1144-5; PMid:21221586

78. Kayode O. Osungbade and Adeolu O. Oladunjoye (2012). Anaemia in Developing Countries: Burden and Prospects of Prevention and Control, Anemia, Dr. Donald Silverberg (Ed.), URL – http://www.intechopen.com/books/anemia/anaemia-in-developing-countries-burden-andprospects-of-prevention-and-control

79. Kalenga MK, Nyembo MK, Nshimba JM, Foidart M. (2003). Anemia associated with malaria and intestinal helminthiasis at Lubumbashi. Sante Publique. 15:413–421. https://doi.org/10.3917/spub.034.0413; PMid:14964010

80. Brosens I, Benagiano G, Brosens JJ. (2017). Endometriosis and obstetric syndromes: early diagnosis must become a priority. Fertility and Sterility. 107(1): 66–67. https://doi.org/10.1016/j.fertnstert.2016.10.010; PMid:27793382

81. Brosens I, Benagiano G. (2015). Menstrual preconditioning for the prevention of major obstetrical syndromes in polycystic ovary syndrome. 213(4): 488–493. https://doi.org/10.1016/j.ajog.2015.07.021; PMid:26212182

82. Brosens I, Joanne Muter J, Gargett CE et al. (2017). The impact of uterine immaturity on obstetrical syndromes during adolescences. Americal Journal of Obstetrics and gynecology. 217 (5): 546–555. https://doi.org/10.1016/j.ajog.2017.05.059; PMid:28578177

83. Boutin A, Gasse C, Demers S et al. (2018). Maternal Characteristics for the Prediction of Preeclampsia in Nulliparous Women: The Great Obstetrical Syndromes (GOS). Journal of obstetrics and gynaecology MSc. 40(5):572–578. https://doi.org/10.1016/j.jogc.2017.07.025; PMid:29079078

84. National Institute for Health and Clinical Excellence. (2008). NICE clinical guideline 62. Antenatal care: routine care for the healthy pregnant woman. URL – https://www.nice.org.uk/guidance/cg62/evidence/evidence-tables-from-the-2003-version-pdf-196748322 https://doi.org/10.1136/bmj.38380.674340.E0; PMid:15743856 PMCid:PMC554027

85. Duckitt K, Harrington D. (2005). Risk factors for preeclampsia at antenatal booking: systematic review of controlled studies. BMJ. 330:565–567.

86. Chappell LC, Enye S, Seed P et al. (2008). Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension. 51:1002–1009. https://doi.org/10.1161/HYPERTENSIONAHA.107.107565; PMid:18259010

87. Hernandez-Diaz S, Toh S, Cnattingius S. (2009). Risk of preeclampsia in first and subsequent pregnancies: prospective cohort study. BMJ. URL – https://www.bmj.com/content/338/bmj.b2255 https://doi.org/10.1136/bmj.b2255; PMid:19541696 PMCid:PMC3269902

88. Sibai BM, Lindheimer M, Hauth J et al. (1998). Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 339:667– 671. https://doi.org/10.1056/NEJM199809033391004; PMid:9725924

89. Goetzinger KR, Singla A, Gerkowicz S et al. (2010). Predicting the risk of pre-eclampsia between 11 and 13 weeks’ gestation by combining maternal characteristics and serum analytes, PAPP-A and free beta-hCG. Prenat Diagn. 30:1138–1142. https://doi.org/10.1002/pd.2627; PMid:20936638 PMCid:PMC3129136

 90. Poon LC, Kametas NA, Chelemen T et al. (2010). Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. J Hum Hypertens. 24:104–110. https://doi.org/10.1038/jhh.2009.45; PMid:19516271

91. Audibert F, Boucoiran I, An N et al. (2010). Screening for preeclampsia using first-trimester serum markers and uterine artery Doppler in nulliparous women. Am J Obstet Gynecol. 203:383. e1–e8. https://doi.org/10.1016/j.ajog.2010.06.014; PMid:20691410

92. Poon LC, Maiz N, Valencia C et al. (2009). First-trimester maternal serum pregnancy-associated plasma protein-A and pre-eclampsia. Ultrasound Obstet Gynecol. 33:23–33. https://doi.org/10.1002/uog.6280; PMid:19090499

93. Poon LC, Stratieva V, Piras S et al. (2010). Hypertensive disorders in pregnancy: combined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11–13 weeks. Prenat Diagn. 30:216–223. https://doi.org/10.1002/pd.2440; PMid:20108221

94. Gagnon A, Wilson RD, Audibert F et al. (2008). Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 30918–3949. https://doi.org/10.1016/S1701-2163(16)32973-5

95. Poon LC, Akolekar R, Lachmann R et al. (2010). Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11–13 weeks. Ultrasound Obstet Gynecol. 35:662–670. https://doi.org/10.1002/uog.7628; PMid:20232288

96. Yu CK, Smith GC, Papageorghiou AT et al. (2005). Fetal Medicine Foundation Second Trimester Screening Group. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected lo-risk woman. Am J Obstet Gynecol. 193: 429–436. https://doi.org/10.1016/j.ajog.2004.12.014; PMid:16098866

97. Leslie K, Whitley G, Herse F et al. (2015). Increased Apoptosis, Altered Oxygen Signaling, and Antioxidant Defenses in First-Trimester Pregnancies with High-Resistance Uterine Artery Blood Flow. American Journal of Pathology. 185(10). https://doi.org/10.1016/j.ajpath.2015.06.020; PMid:26362067

98. Prefumo F, Sebire NJ, Thilaganathan B. (2004). Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery Doppler indices. Hum Reprod. 19(1):206–209. https://doi.org/10.1093/humrep/deh037; PMid:14688183

99. Fournier T, Handshuh K, Tsatsaris V et al. (2008). Role of nuclear receptors and their ligands in human trophoblast invasion. J Reprod Immunol. 77(2):161–170. https://doi.org/10.1016/j.jri.2007.05.004; PMid:17706792

100. Nicolaides KH. (2011). A model for an ewpyramid of prenatal care based on the11to 13 weeks’ assessment. Prenat Diagn. 31(1):3–6. https://doi.org/10.1002/pd.2685; PMid:21210474

101. Herraiz I, Arbues J, Camano I et al. (2009). Application of a first-trimester prediction model for pre-eclampsia based on uterine arteries and maternal history in high-risk pregnancies. Prenat Diagn. 29(12):1123–1129. https://doi.org/10.1002/pd.2383; PMid:19813221

102. Melchiorre K, Leslie K, Prefumo F et al. (2009). First trimester uterine artery Doppler indices in the prediction if small for gestational age pregnancy and intrauterine growth restriction. Ultrasound Obstet Gynecol. 33:524–529. https://doi.org/10.1002/uog.6368; PMid:19382287

103. Pagani G, D’Antonio F, Khalil A et al. (2014). Association between reduced fetal movements at term and first trimester markers of impaired placental development. Placenta. 35:606–610. https://doi.org/10.1016/j.placenta.2014.04.020; PMid:24951173

104. Johnson A, Federico C, MagaMartinez M et al. (2015). [192–POS]. Term and preterm preeclampsia: Are there two distinct phenotypes? Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 5(1): 97.

105. Tranquilli AL, Brown MA, Zeeman GG et al. (2013). The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 3: 44–47. https://doi.org/10.1016/j.preghy.2012.11.001; PMid:26105740

106. Hidaka A, Nakamoto O, Eguchi K et al. (1998). Classification of onset period of severe toxemia of pregnancy and duration from mild preeclampsia to severe preeclampsia: Survey for severe toxemia of pregnancy using case card, No. 1. Journal of Japan Society for study of toxemia of pregnancy. 6:155–165.

107. Hidaka A, Nakamoto O, Eguchi K et al. (1998). Maternal complications in severe toxemia of pregnancy: Survey for severe toxemia of pregnancy using case card, No.3. Journal of Japan Society for the study of Toxemia of Pregnancy. 6: 174–182.

108. von Dadelszen P, Magee LA, Roberts JM. (2003). Subclassification of preeclampsia. Hypertens Pregnancy. 22: 143–148. https://doi.org/10.1081/PRG-120021060; PMid:12908998

109. Gassea C, Boutinb A, Cotéc M. (2018). First-trimester mean arterial blood pressure and the risk of preeclampsia: The Great Obstetrical Syndromes (GOS) study. Pregnancy Hypertension. 12:178–182. https://doi.org/10.1016/j.preghy.2017.11.005; PMid:29175170

110. Boutin A, Demers S, Gasse C et al. (2018). First Trimester Screening for Fetal Aneuploidies Using Placental Growth Factor: The Great Obstetrical Syndrome (GOS) Study. Journal of obstetrics and gynaecology. 40(8):1044–1049. https://doi.org/10.1016/j.jogc.2017.11.032; PMid:30103877

111. Pillar N, Yoffe L, Hod M, Shomron N. (2014). The possible involvement of microRNAs in preeclampsia and gestational diabetes mellitus. Best Practice and Research in Clinical Obstetrics and Gynaecology. 29(2):176-182. https://doi.org/10.1016/j.bpobgyn.2014.04.021; PMid:25214435

112. Kusanovic JP, Romero R, Hassan SS et al. (2007). Maternal serum soluble CD30 is increased in normal pregnancy, but decreased in preeclampsia and small for gestational age pregnancies. The Journal of Maternal-Fetal & Neonatal Medicine 20 (12):867-878. https://doi.org/10.1080/14767050701482993; PMid:17853188 PMCid:PMC2276339

113. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science 2001;292:1115–8. https://doi.org/10.1126/science.1058709; PMid:11352068

114. Hattori M, Taylor TD. (2009). The human intestinal microbiome: a new frontier of human biology. DNA Res. 16:1–12. https://doi.org/10.1093/dnares/dsn033; PMid:19147530 PMCid:PMC2646358

115. Caporaso JG, Kuczynski J, Stombaugh J et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7(5):335–336. https://doi.org/10.1038/nmeth.f.303; PMid:20383131 PMCid:PMC3156573

116. Goldenberg RL, Hauth JC, Andrews WW. (2000). Intrauterine infection and preterm delivery. N Engl J Med. 342:1500–1507. https://doi.org/10.1056/NEJM200005183422007; PMid:10816189

117. Zhou X, Brotman RM, Gajer P et al. (2010). Recent advances in understanding the microbiology of the female reproductive tract and the causes of premature birth. Infect Dis Obstet Gynecol. URL – https://www.ncbi.nlm.nih.gov/pubmed/21197076 https://doi.org/10.1155/2010/737425; PMid:21197076 PMCid:PMC3004384

118. Than NG, Romero R, Laurentiu Tarca L et al. (2018). Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Frontiers in Immunology. URL – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092567/ https://doi.org/10.3389/fimmu.2018.01661; PMid:30135684 PMCid:PMC6092567

119. Rosenfeld CR, Rivera R. (1978). Circulatory responses to systemic infusions of estrone and estradiol-17alpha in nonpregnant, oophorectomized ewes. Am J Obstet Gynecol. 132(4):442–448. https://doi.org/10.1016/0002-9378(78)90782-2

120. Caulin-Glaser T, García-Cardeña G, Sarrel P et al. (1997). 7 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ Res. 81(5):885–892. https://doi.org/10.1161/01.RES.81.5.885; PMid:9351464

121. Hisamoto K, Ohmichi M, Kurachi H et al. (2001). Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 276(5):3459–3467. https://doi.org/10.1074/jbc.M005036200; PMid:11044445

122. Simoncini T, Genazzani AR , Liao JK. (2002). Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation. 105(11):1368–1373. https://doi.org/10.1161/hc1102.105267; PMid:11901050

123. Shanker G, Sorci-Thomas M, Adams MR. (1994). Estrogen modulates the expression of tumor necrosis factor alpha mRNA in phorbol ester-stimulated human monocytic THP-1 cells. Lymphokine Cytokine Res. 13(6):377–382.

124. Jobe SO, Tyler CT, Magness RR. (2013). Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascula dysfunction. Hypertension. 61(2): 480–487. https://doi.org/10.1161/HYPERTENSIONAHA.111.201624; PMid:23319542 PMCid:PMC3674508

125. Mulac-Jericevic B, Mullinax RA, DeMayo FJ et al. (2000). Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 289(5485):1751–1754. https://doi.org/10.1126/science.289.5485.1751; PMid:10976068

126. Norwitz ER, Lye SJ. (2009). Biology of parturition. In: Creasy RK, Resnick R, Iams JD, Lockwood CJ, Moore T, eds. Creasy and Resnik’s Maternal-Fetal Medicine: Principles and Practice. 6th ed. Philadelphia, Pennsylvania, USA: Elsevier, Inc. 69–85. https://doi.org/10.1016/B978-1-4160-4224-2.50007-7

127. Blois SM, Iiarrequi JM, Tometten M et al. (2007). A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med. 13(12):1450–1457. https://doi.org/10.1038/nm1680; PMid:18026113

128. Arck PC, Ruke M, Rose M et al. (2008). Early risk factors for miscarriage: a prospective cohort study in pregnant women. Reprod Biomed Online. 17(1):101–113. URL – https://www.rbmojournal.com/article/S1472-6483(10)60300-8/pdf https://doi.org/10.1016/S1472-6483(10)60300-8

129. Mucci LA, Lagiou P, Tamimi RM et al. (2003). Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control. 14(4):311–318. https://doi.org/10.1023/A:1023966813330

130. Hartwig IR, Pincus MK, Diemert A et al. (2013). Sex-specific effect of first-trimester maternal progesterone on birthweight. Hum Reprod. 28(1):77–86. URL – https://academic.oup.com/humrep/article/28/1/77/596201 https://doi.org/10.1093/humrep/des367; PMid:23049076

131. Kumar P, Magon N. Hormones in pregnancy. (2012). Niger Med J. 53(4): 179–183. https://doi.org/10.4103/0300-1652.107549; PMid:23661874 PMCid:PMC3640235.

132. Askie LM, Duley L, Henderson-Smart DJ et al. (2007). Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet. 369(9575):1791–1798. https://doi.org/10.1016/S0140-6736(07)60712-0

133. Bujold E, Roberge S, Lacasse Y et al. (2010). Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta– analysis. Obstetrics & Gynecology. 116(2 Pt 1):402–414. https://doi.org/10.1097/AOG.0b013e3181e9322a; PMid:20664402

134. Roberge S, Giguere Y, Villa P et al. (2012). Early administration of low-dose aspirin for the prevention of severe and mild preeclampsia: a systematic review and meta– analysis. American Journal of Perinatology. 29(7):551–556. https://doi.org/10.1055/s-0032-1310527

135. Duley L, Henderson-Smart DJ, Meher S, King JF. (2007). Antiplatelet agents for preventing pre-eclampsia and its complications.: Cochrane Database of Systematic Reviews. URL – https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004659.pub2/full https://doi.org/10.1002/14651858.CD004659.pub2; PMid:17443552

136. Тезиков ИС, Липатов НА, Фролова ОА, Кутузова АВ. (2016). Методология профилактики больших акушерских синдромов. Вопросы гинекологии, акушерства и перинатологии. 15(2): 33– 43.

137. Meher S, Duley L. (2011). Progesterone for preventing pre-eclampsia and its complications. Cochrane Database of Systematic Reviews. URL – https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD006175/full2011

138. Kupferminc M, Rimon E, Many A et al. (2011). Low molecular weight heparin versus no treatment in women with previous severe pregnancy complications and placental findings without thrombophilia. Blood Coagul Fibrinolysis. 22(2):123–126. URL – https://insights.ovid.com/pubmed?pmid=21192252 https://doi.org/10.1097/MBC.0b013e328343315c; PMid:21192252

139. Meher S, Duley L. (2007). Nitric oxide for preventing pre-eclampsia and its complications. Cochrane Database of Systematic Reviews. 18(2). URL – https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD006490/full https://doi.org/10.1002/14651858.CD006490; PMid:17443623

140. Hofmeyr GJ, Lawrie TA, Atallah ÁN et al. (2014). Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database of Systematic Reviews. URL – https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001059.pub4/full https://doi.org/10.1002/14651858.CD001059.pub4; PMid:24960615