• Современный метод в диагностике вируса папилломы человека при заболеваниях шейки матки 
ru К содержанию

Современный метод в диагностике вируса папилломы человека при заболеваниях шейки матки 

HEALTH OF WOMAN. 2016.2(108):173–178; doi 10.15574/HW.2016.108.173 
 

Современный метод в диагностике вируса папилломы человека при заболеваниях шейки матки 
 

Веропотвелян П. Н., Цехмистренко И. С., Веропотвелян Н. П.

«Межобластной центр медицинской генетики и пренатальной диагностики», г. Кривой Рог

Перинатальный центр, г. Киев 
 

В данной обзорной статье изучено множество публикаций, рассмотрены новейшие молекулярные маркеры и их роль в прогнозировании течения неопластического процесса шейки матки. В настоящее время активно изучаются микро-РНК как мощные посттранскрипционные регуляторы экспрессии генов, способные одновременно моделировать ряд генов-мишеней. В литературе выделены микро-РНК, экспрессия которых изменяется при ВПЧ (вирус папилломы человека), ассоциированных с заболеваниями шейки матки. В публикациях делается акцент, что нарушение регуляции микро-РНК в тканях может играть важную роль в онкогенезе рака шейки матки (РШМ), потому исследователи информируют, что микро-РНК в качестве как прогностического фактора, так и терапевтической опции РШМ, остается чрезвычайно актуальными. 
 

Ключевые слова: вирус папилломы человека, цервикальная интраэпителиальная неоплазия, онкогены, экспрессия гена, рак шейки матки.


Литература:

1. Korpal M, Lee ES, Hu G, Kang Y. 2008. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283(22):14910-4.

2. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10(5):593–601.

3. Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK. 2008. Transforming growth factor-b1, transforming growth factor-b2, and transforming growth factor-b3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol. Cancer Res. 6(5):695–705.

4. Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM. 2003. TGF-b switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest. 112(7):1116–24.

5. Lipschutz JH, Guo W, O’Brien LE, Nguyen YH, Novick P, Mostov KE. 2000. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell. 11(12):4259–75.

6. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. 2009. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 137(6):1005–17.

7. Centers for Disease Control and Prevention (CDC). Human papillomavirus-associated cancers – United States, 2004–2008. MMWR Morb. Mortal Wkly Rep. 61(15):258–61.

8. Castle PE, Fetterman B, Thomas Cox J, Shaber R, Poitras N, Lorey T, Kinney W. 2010. The age-specific relationships of abnormal cytology and human papillomavirus DNA results to the risk of cervical precancer and cancer. Obstet. Gynecol. 116(1):76–84.

9. Wang HK, Duffy AA, Broker TR, Chow LT. 2009. Robust production and passaging of infectious HPV in squa mous epithelium of primary human keratinocytes. Genes Dev. 23(2):181–94. http://dx.doi.org/10.1101/gad.1735109; PMid:19131434 PMCid:PMC2648537

10. Meijer CJ, van den Brule AJ, Snijders PJ, Helmerhorst T, Kenemans P, Walboomers JM. 1992. Detection of human papillomavirus in cervical scrapes by the polymerase chain reaction in relation to cytology: possible implications for cervical cancer screening. IARC Sci. Publ. 119:271–81.

11. Prilepskaya VN, Nazarovа NM, Mzarelua GM, Faizullin LZ, Trofimov DYu. 2015. HPV-associated cervical disease – new in diagnostics. Оbstetrics and gynecology. 11:20–26.

12. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63(6):1129–36. http://dx.doi.org/10.1016/0092-8674(90)90409-8

13. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M et al. 2013. 2012 ASCCP Consensus Guidelines Conference. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet. Gynecol. 121(4):829–46.

14. Roman A, Munger K. 2013. The papillomavirus E7 proteins. Virology. 445(1–2):138–68.

15. Wang X, Wang HK, Li Y. 2014. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA. 111(11):4262–7.

16. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63(6):1129–36. http://dx.doi.org/10.1016/0092-8674(90)90409-8

17. Roman A, Munger K. 2013. The papillomavirus E7 proteins. Virology. 445(1–2):138–68.

18. Khan MJ, Castle PE, Lorincz AT, Wacholder S, Sherman M, Scott DR et al. 2005. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J. Natl. Cancer Inst. 97(14):1072–9. http://dx.doi.org/10.1093/jnci/dji187; PMid:16030305

19. Murphy N, Ring M, Heffron CC, King B, Killalea AG, Hughes C et al. 2005. p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer. J. Clin. Pathol. 58(5):525-34. http://dx.doi.org/10.1136/jcp.2004.018895

20. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U et al. 2001. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer. 92(2):276-84.

21. Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5):843–54. http://dx.doi.org/10.1016/0092-8674(93)90529-Y

22. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403(6772):901–6.

23. Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell. 75(5):855–62. http://dx.doi.org/10.1016/0092-8674(93)90530-4

24. Wightman B, Bьrglin TR, Gatto J, Arasu P, Ruvkun G. 1991. Negative regulatory sequences in the lin-14 3’-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5(10):1813–24. http://dx.doi.org/10.1101/gad.5.10.1813; PMid:1916264

25. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001. Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–8. http://dx.doi.org/10.1126/science.1064921; PMid:11679670

26. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. 2005. MicroRNA expression profiles classify human cancers. Nature. 435(7043):834–8.

27. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szбsz AM, Wang ZC et al. 2009. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137(6):1032-46.

28. Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG, Xie X. 2011. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. J. Eur. Cancer. 47(14):2166–74.

29. Lee DY, Deng Z, Wang CH, Yang BB. 2007. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl. Acad. Sci. USA. 104(51):20350–5.

30. Xiong J, Du Q, Liang Z. 2010. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene. 29(35):4980–8. http://dx.doi.org/10.1038/onc.2010.241; PMid:20562918

31. Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW et al. 2012. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 31(1):80–92. http://dx.doi.org/10.1038/onc.2011.208; PMid:21643017 PMCid:PMC3253429

32. Zheng ZM, Wang X. 2011. Regulation of cellular miRNA expression by human papillomaviruses. Biochim. Biophys. Acta. 1809(11–12):668–77.

33. Hua Y, Larsen N, Kalyana-Sundaram S, Kjems J, Chinnaiyan AM, Peter ME. 2013. miRConnect 2.0: Identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics 14:179.

34. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 408(6808):86–9.

35. Wang X. 2009. A PCR-based platform for microRNA expression profiling studies. RNA. 15(4):716–23. http://dx.doi.org/10.1261/rna.1460509; PMid:19218553 PMCid:PMC2661836

36. Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, Fuso Nerini I et al. 2011. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol. 12(3):273–85. http://dx.doi.org/10.1016/S1470-2045(11)70012-2

37. Della Vittoria Scarpati G, Falcetta F, Carlomagno C, Ubezio P, Marchini S, De Stefano A et al. 2012. A speci?c miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 83(4):1113–9.

38. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. 2008. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 3(7):2557. http://dx.doi.org/10.1371/journal.pone.0002557; PMid:18596939 PMCid:PMC2438475

39. Wang F, Li Y, Zhou J, Xu J, Peng C, Ye F et al. 2011. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am. J. Pathol. 179(5):2580–8.

40. Li JH, Xiao X, Zhang YN, Wang YM, Feng LM, Wu YM, Zhang YX. 2011. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol. Oncol. 120(1):145–51.

41. Hu X, Schwarz JK, Lewis JSJr, Huettner PC, Rader JS, Deasy JO et al. 2010. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 70(4):1441–8. http://dx.doi.org/10.1158/0008-5472.CAN-09-3289; PMid:20124485 PMCid:PMC2844247

42. Ahmad J, Hasnain SE, Siddiqui MA, Ahamed M, Musarrat J, Al-Khedhairy AA. 2013. MicroRNA in carcinogenesis & cancer diagnostics: a new paradigm. Indian J. Med. Res. 137(4):680–94.

43. Guzov II. 2012. Clinical aspects of molecular genetic diagnosis of human papillomavirus in women. Proceedings of the conference «Integration in laboratory medicine». Moscow.

44. Pedroza-Torres A et al. 2014. MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance. Molecules 19, 6263-6281; doi: 10. 3390/ molecules 19056263

45. Preventing Cervical Cancer: A Guide for Physicians. M, MEDpress. 2007:56.