• Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Часть 1 
ru К содержанию Полный текст статьи

Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Часть 1 

SOVREMENNAYA PEDIATRIYA.2016.7(79):65-73; doi 10.15574/SP.2016.79.65 

Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Часть 1 

Абатуров А. Е., Никулина А. А.

ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина


Нозокомиальные бактериальные пневмонии, ассоциированные с грамотрицательными возбудителями, характеризуются тяжелым течением, высоким риском развития осложнений и летального исхода. В данной статье рассмотрены реакции иммунной системы на инфицирование грамотрицательной бактерией Pseudomonas aeruginosa респираторного тракта, которые обеспечивают эффективный клиренс патогена. Продемонстрированы механизмы индукции образраспознающих рецепторов клеток респираторного тракта патоген-ассоцированными молекулярными структурами Pseudomonas aeruginosa.


Ключевые слова: пневмония, Pseudomonas aeruginosa, образ-распознающие рецепторы.


Литература:

1. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway / L. A. Mijares, T. Wangdi, C. Sokol [et al.] // J. Immunol. — 2011. — Jun. 15. — P. 186 (12). — P. 7080—8. https://doi.org/10.4049/jimmunol.1003687.

2. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia / A. M. Hajjar, H. Harowicz, H. D. Liggitt [et al.] // Am. J. Respir. Cell Mol. Biol. — 2005. — Vol. 33 (5). — P. 470—5. https://doi.org/10.1165/rcmb.2005-0199OC.

3. Animal NLRs provide structural insights into plant NLR function / A. Bentham, H. Burdett, P. A. Anderson [et al.] // Ann Bot. — 2016. — Aug 25. pii: mcw171. https://doi.org/10.1093/aob/mcw171; PMid:27562749

4. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review / T. Sawa, M. Shimizu, K. Moriyama, J. P. Wiener-Kronish // MBio. — 2015. — Sep. 1. — Vol. 6 (5). —e00981—15. https://doi.org/10.1128/mBio.00981-15.

5. Beatson S. A. Variation in bacterial flagellins: from sequence to structure / S. A. Beatson, T. Minamino, M. J. Pallen // Trends Microbiol. — 2006. — Vol. 14. — P. 151—5. https://doi.org/10.1016/j.tim.2006.02.008.

6. Bleriot C. The interplay between regulated necrosis and bacterial infection / C. Bleriot, M. Lecuit // Cell Mol. Life Sci. — 2016. — Vol. 73 (11—12). — P. 2369-78. https://doi.org/10.1007/s00018-016-2206-1.

7. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions / H. Shen, P. E. de Almeida, K. H. Kang [et al.] // PLoS One. — 2012. — Vol. 7 (11). e50238. https://doi.org/10.1371/journal.pone.0050238.

8. Chun J. TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration / J. Chun, A. Prince // Cell Host Microbe. — 2009. — Jan. 22. — Vol. 5 (1). — P. 47—58. https://doi.org/10.1016/j.chom.2008.11.009.

9. Cohen T. S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia / T. S. Cohen, A. S. Prince // J. Clin. Invest. — 2013. —Vol. 123 (4). — P. 1630—7. https://doi.org/10.1172/JCI66142.

10. Computational Approaches to Toll—Like Receptor 4 Modulation / J. M. Billod, A. Lacetera, J. Guzman-Caldentey, S. Martin-Santamaria // Molecules. — 2016 Jul. 30. — Vol. 21 (8). pii: E994. https://doi.org/10.3390/molecules21080994.

11. Cunha L. D. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria / L. D. Cunha, D. S. Zamboni // Front Cell Infect. Microbiol. — 2013. — Nov. 26. — Vol. 3. — P. 76. https://doi.org/10.3389/fcimb.2013.00076..

12. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9 / M. Magnusson, R. Tobes, J. Sancho, E. Pareja // J. Immunol. — 2007. — Jul. 1. — Vol. 179 (1). — P. 31—5. https://doi.org/10.4049/jimmunol.179.1.31.

13. de Vasconcelos N. M. Inflammasomes as polyvalent cell death platforms / N. M. de Vasconcelos, N. Van Opdenbosch, M. Lamkanfi // Cell Mol. Life Sci. — 2016. — Vol. 73 (11—12). — P. 2335—47. https://doi.org/10.1007/s00018-016-2204-3.

14. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor / K. Ivicak-Kocjan, G. Panter, M. Bencina, R. Jerala // Biochem Biophys Res Commun. — 2013. — Vol. 435. — P. 40—5. https://doi.org/10.1016/j.bbrc.2013.04.030.

15. Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs / S. Epelman, D. Stack, C. Bell [et al.] // J. Immunol. — 2004. — Aug. 1. — Vol. 173 (3). — P. 2031—40. https://doi.org/10.4049/jimmunol.173.3.2031.

16. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5 / V. Forstneric, K. Ivicak-Kocjan, A. Ljubetic [et al.] // PLoS One. — 2016. — Jul. 8. — Vol. 11 (7):e0158894. https://doi.org/10.1371/journal.pone.0158894.

17. Evasion of inflammasome activation by microbial pathogens / T. K. Ulland, P. J. Ferguson, F. S. Sutterwala [et al.] // J. Clin. Invest. — 2015. — Vol. 125 (2). — P. 469—77. https://doi.org/10.1172/JCI75254.

18. Farias R. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa / R. Farias, S. Rousseau // Front Cell Dev. Biol. — 2016. — Jan. 11. — Vol. 3. — P. 87. https://doi.org/10.3389/fcell.2015.00087.

19. Flagellin concentrations in expectorations from cystic fibrosis patients / V. Balloy, G. Thevenot, T. Bienvenu [et al.] // BMC Pulm Med. — 2014. — Jun 9. — Vol. 14. — P. 100. https://doi.org/10.1186/1471-2466-14-100.

20. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease / N. Rieber, A. Brand, A. Hector [et al.] // J. Immunol. — 2013. — Feb. 1. — Vol. 190 (3). — P. 1276—84. https://doi.org/10.4049/jimmunol.1202144.

21. Folgori L. Healthcare-Associated Infections in Pediatric and Neonatal Intensive Care Units: Impact of Underlying. Risk Factors and Antimicrobial Resistance on 30-Day Case-Fatality in Italy and Brazil / L. Folgori, P. Bernaschi, S. Piga // Infect Control Hosp Epidemiol. — 2016. —

Aug. 11. — P. 1—8. https://doi.org/10.1017/ice.2016.185.

22. Galal Y. S. Ventilator-Associated Pneumonia: Incidence, Risk Factors and Outcome in Paediatric Intensive Care Units at Cairo University Hospital / Y. S. Galal, M. R. Youssef, S. K. Ibrahiem // J. Clin. Diagn Res. — 2016. — Vol. 10 (6). — SC06—11. https://doi.org/10.7860/JCDR/2016/18570.7920.

23. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever / Z. Karalyan, H. Voskanyan, Z. Ter-Pogossyan [et al.] // Vet. Immunol. Immunopathol. — 2016. — Oct. 15. — Vol. 179. — P. 58—62. https://doi.org/10.1016/j.vetimm.2016.08.005.

24. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor / C. M. Greene, H. Ramsay, R. J. Wells [et al.] // Mediators Inflamm. — 2010. — 2010: 423241. https://doi.org/10.1155/2010/423241.

25. Innate immune signaling activated by MDR bacteria in the airway / D. Parker, D. Ahn, T. Cohen [et al.] // Physiol. Rev. — 2016. — Vol. 96 (1). — P. 19—53. https://doi.org/10.1152/physrev.00009.2015.

26. Kato K. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-beta (TRIF) recruitment to Toll-like receptor 3 / K. Kato, E. P. Lillehoj, K. C. Kim // Am. J. Respir. Cell Mol. Biol. — 2014. — Vol. 51 (3). — P. 446—54. https://doi.org/10.1165/rcmb.2014-0018OC.

27. Lavoie E. G. Innate immune responses to Pseudomonas aeruginosa infection / E. G. Lavoie, T. Wangdi, B. I. Kazmierczak // Microbes Infect. — 2011. — Vol. 13 (14—15). — P. 1133—45.

https://doi.org/10.1016/j.micinf.2011.07.011.

28. Lechtenberg B. C. Structural mechanisms in NLR inflammasome signaling / B. C. Lechtenberg, P. D. Mace, S. J. Riedl // Curr. Opin. Struct. Biol. — 2014. — Vol. 29. — P. 17—25. https://doi.org/10.1016/j.sbi.2014.08.011.

29. Lee J. The hierarchy quorum sensing network in Pseudomonas aeruginosa / J. Lee, L. Zhang // Protein Cell. — 2015. — Vol. 6 (1). — P. 26—41. https://doi.org/10.1007/s13238-014-0100-x.

30. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2 / S. S. Kang, J. R. Sim, C. H. Yun, S. H. Han // Arch. Pharm Res. — 2016. — Aug. 8.

31. Lovewell R. R. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa / R. R. Lovewell, Y. R Patankar, B. Berwin // Am. J. Physiol. Lung. Cell Mol. Physiol. — 2014. — Apr. 1. — Vol. 306 (7). — P. 591—603. https://doi.org/10.1152/ajplung.00335.2013.

32. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism / A. A. Anas, M. H. van Lieshout, T. A. Claushuis [et al.] // Am. J. Physiol. Lung Cell Mol. Physiol. — 2016. — Aug. 1. — Vol. 311 (2). — P. 219—28. https://doi.org/10.1152/ajplung.00078.2016.

33. Maldonado R. F. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection / R. F. Maldonado, I. Sa-Correia, M. A. Valvano // FEMS Microbiol Rev. — 2016. — Vol. 40 (4). — P. 480—93. https://doi.org/10.1093/femsre/fuw007.

34. Maltez V. I. Reassessing the Evolutionary Importance of Inflammasomes / V. I. Maltez, E. A. Miao // J. Immunol. — 2016. — Feb. 1. — Vol. 196 (3). — P. 956—62. https://doi.org/10.4049/jimmunol.1502060.

35. Mayer A. K. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells / Mayer A. K., Muehmer M., Mages J. [et al.] // J. Immunol. — 2007. — Mar. 1. — Vol. 178 (5). — P. 3134—42. https://doi.org/10.4049/jimmunol.178.5.3134; PMid:17312161.

36. McIsaac S. M. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis / S. M. McIsaac, A. W. Stadnyk, T. J. Lin // J. Leukoc. Biol. — 2012. — Vol. 92 (5). — P. 977—85. https://doi.org/10.1189/jlb.0811410.

37. Mechanisms of inflammasome activation: recent advances and novel insights / S. K. Vanaja, V. A. Rathinam, K. A. Fitzgerald [et al.] // Trends Cell Biol. — 2015. — Vol. 25 (5). — P. 308—15. https://doi.org/10.1016/j.tcb.2014.12.009.

38. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2 / Ryu J. C., Kim M. J., Kwon Y. [et al.] // Mucosal Immunol. — 2016. — Aug. 24. doi: 10.1038/mi.2016.73. https://doi.org/10.1038/mi.2016.73

39. Pier G. B. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity // Int. J. Med. Microbiol. — 2007. — Vol. 297 (5). — P. 277—95. https://doi.org/10.1016/j.ijmm.2007.03.012.

40. PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism / Y. S. Park, E. P. Lillehoj, K. Kato [et al.] // Am. J. Physiol. Lung. Cell Mol. Physiol. — 2012. — Apr. 1. — Vol. 302 (7). — P. 679—87. https://doi.org/10.1152/ajplung.00360.2011.

41. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway / Zhang S., Yang N., Ni S. [et al.] // Int. J. Clin. Exp. Pathol. — 2014. — Sep. 15. — Vol. 7 (10). — P. 6626—34. PMid:25400741 PMCid:PMC4230075.

42. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression / E. Amiel, R. R. Lovewell, G. A. O'Toole [et al.] // Infect Immun. — 2010. — Vol. 78 (7). — P. 2937—45. https://doi.org/10.1128/IAI.00144-10.

43. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5 / R. Adamo, S. Sokol, G. Soong [et al.] // Am. J. Respir. Cell Mol. Biol. — 2004. — Vol. 30 (5). — P. 627—34. https://doi.org/10.1165/rcmb.2003-0260OC.

44. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration / X. Li, S. He, R. Li [et al.] // Nat. Microbiol. — 2016. — Aug. 8. — Vol. 1 (10). — P. 16132. https://doi.org/10.1038/nmicrobiol.2016.132.

45. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway / K. Zhao, X. Deng, C. He [et al.] // Infect. Immun. — 2013. — Vol. 81 (12). — P. 4509—18. https://doi.org/10.1128/IAI.01008-13.

46. Pseudomonas aeruginosa renews its virulence factors / P. Huber, P. Basso, E. Reboud, I. Attree // Environ Microbiol Rep. — 2016. — Jul. 18. https://doi.org/10.1111/1758-2229.12443.

47. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome / E. Faure, J. B. Mear, K. Faure, [et al.] // Am. J. Respir. Crit. Care Med. — 2014. — Apr. 1. — Vol. 189 (7). — P. 799—811. https://doi.org/10.1164/rccm.201307-1358OC.

48. Pyroptosis — a cell death modality of its kind? / O. Kepp, L. Galluzzi, L. Zitvogel, G. Kroemer // Eur. J. Immunol. — 2010. — Vol. 40 (3). — P. 627—30. https://doi.org/10.1002/eji.200940160.

49. Ranf S. Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different / S. Ranf // PLoS Pathog. — 2016. — Jun 9. — Vol. 12 (6):e1005596. https://doi.org/10.1371/journal.ppat.1005596.

50. Re F. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells / F. Re, J. L. Strominger // J. Immunol. — 2004. — Dec. 15. — Vol. 173 (12). — P. 7548—55. https://doi.org/10.4049/jimmunol.173.12.7548.

51. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa / S. J. Skerrett, C. B. Wilson, H. D. Liggitt, A. M. Hajjar // Am. J. Physiol. Lung. Cell Mol. Physiol. — 2007. — Vol. 292 (1). — P. 312—22. https://doi.org/10.1152/ajplung.00250.2006.

52. Resistance to tobramycin and colistin in isolates of Pseudomonas aeruginosa from chronically colonized patients with cystic fibrosis under antimicrobial treatment / G. Valenza, K. Radike, C. Schoen, S. Horn [et al.] // Scand. J. Infect. Dis. — 2010. — Vol. 42 (11—12). — P. 885—9. https://doi.org/10.3109/00365548.2010.509333.

53. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia / A. E. Morris, H. D. Liggitt, T. R. Hawn, S. J. Skerrett // Am. J. Physiol. Lung. Cell Mol. Physiol. — 2009. — Vol. 297 (6). — P. 1112—9. https://doi.org/10.1152/ajplung.00155.2009.

54. Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response / A. Verma, S. K. Arora, S. K. Kuravi, R. Ramphal // Infect Immun. — 2005. — Vol. 73 (12). — P. 8237—46. https://doi.org/10.1128/IAI.73.12.8237-8246.2005.

55. Sandiumenge A. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management / А. Sandiumenge, J. Rello // Curr. Opin. Pulm. Med. — 2012. — Vol. 18 (3). — P. 187—93. https://doi.org/10.1097/MCP.0b013e328351f974.

56. Sawa T. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response / Sawa T. // J. Intensive Care. — 2014. — Feb. 18. — Vol. 2 (1). — P. 10. https://doi.org/10.1186/2052-0492-2-10.

57. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung / J. Diaz Caballero, S. T. Clark, B. Coburn [et al.] // MBio. — 2015. — Sep. 1. — Vol. 6 (5):e00981—15. https://doi.org/10.1128/mBio.00981-15.

58. Shaan L. Gellatly. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses / L. Shaan Gellatly, E. W. Robert // Pathog Dis. — 2013. — Vol. 67 (3). — P. 159—73. https://doi.org/10.1111/2049-632X.12033.

59. Sharma D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation / D. Sharma, T. D. Kanneganti // J. Cell Biol. — 2016. — Jun. 20. — Vol. 213 (6). — P. 617—29. https://doi.org/10.1083/jcb.201602089.

60. Structural basis of TLR5-flagellin recognition and signaling / S. Yoon, O. Kurnasov, V. Natarajan, M. Hong [et al.] // Science. — 2012. — Vol. 335. — P. 859—64. https://doi.org/10.1126/science.1215584.

61. Sutterwala F. S. NLRC4/IPAF: a CARD carrying member of the NLR family / F. S. Sutterwala, R. A. Flavell // Clin. Immunol. — 2009. — Vol. 130 (1). — P. 2—6. https://doi.org/10.1016/j.clim.2008.08.011.

62. Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2 / P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, F. Paliogianni // Eur. J. Immunol. — 2009. —Vol. 39 (3). — P. 730—40. https://doi.org/10.1002/eji.200838872.

63. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin / T. Vinckx, Q. Wei, S. Matthijs [et al.] // Microbiology. — 2010. — Vol. 156 (Pt 3). — P. 678—86. https://doi.org/10.1099/mic.0.031971-0.

64. TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4 / G. Lagoumintzis, P. Xaplanteri, G. Dimitracopoulos, F Paliogianni // Scand. J. Immunol. — 2008. — Vol. 67 (2). — P. 193—203. https://doi.org/10.1111/j.1365-3083.2007.02053.x.

65. Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF) mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation / Hwang E. H., Kim T. H., Oh S. M. [et al.] // Cytokine. — 2016. — Vol. 77. — P. 127—34. https://doi.org/10.1016/j.cyto.2015.11.010.

66. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction / F. Pene, D. Grimaldi, B. Zuber [et al.] // J. Infect. Dis. — 2012. — Sep. 15. — Vol. 206 (6). — P. 932—42. https://doi.org/10.1093/infdis/jis438.

67. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C / X. Liu, J. H. Guan, B. C. Jiang [et al.] // Viral Immunol. — 2016. — Vol. 29 (6). — P. 322—31. https://doi.org/10.1089/vim.2016.0013.

68. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing / D. Descamps, M. Le Gars, V. Balloy [et al.] // Proc. Natl. Acad. Sci U S A. — 2012. — Jan 31. — Vol. 109 (5). — P. 1619—24. https://doi.org/10.1073/pnas.1108464109.

69. Toll-like receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection / F. Benmohamed, M. Medina, Y.Z. Wu [et al.] // PLoS One. — 2014. — Mar. 4. — Vol. 9 (3). — P. 90466. https://doi.org/10.1371/journal.pone.0090466.

70. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells / I. Ioannidis, F. Ye, B. McNally, [et al.] // J. Virol. — 2013. — № 87. — Р. 3261—3270. https://doi.org/10.1128/JVI.01956-12.

71. Vance R. E. The NAIP/NLRC4 inflammasomes // Curr Opin Immunol. — 2015. — Vol. 32. — P. 84—9. https://doi.org/10.1016/j.coi.2015.01.010.

72. Williams B. J. Pseudomonas aeruginosa: host defence in lung diseases / B. J. Williams, J. Dehnbostel, T. S. Blackwell // Respirology. — 2010. — Vol. 15 (7). — P. 1037—56. https://doi.org/10.1111/j.1440-1843.2010.01819.x.

73. Wonnenberg B. The role of IL-1β in Pseudomonas aeruginosa in lung infection / B. Wonnenberg, M. Bischoff, C. Beisswenger [et al.] // Cell Tissue Res. — 2016. — Vol. 364 (2). — P. 225—9. https://doi.org/10.1007/s00441-016-2387-9.

74. YCG063 inhibits Pseudomonas aeruginosa LPS-induced inflammation in human retinal pigment epithelial cells through the TLR2-mediated AKT/NF-κB pathway and ROS-independent pathways / S. H. Paeng, W. S. Park, W. K. Jung [et al.] // Int. J. Mol. Med. — 2015. — Vol. 36 (3). — P. 808—16. https://doi.org/10.3892/ijmm.2015.2266.

75. Zgurskaya H. I. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It / H. I. Zgurskaya, C. A. Lopez, S. Gnanakaran // ACS Infect. Dis. — 2015. — Vol. 1 (11). — P. 512—522. https://doi.org/10.1021/acsinfecdis.5b00097.

76. Zhao Y. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus / Y. Zhao, F. Shao // Immunol. Rev. — 2015. — Vol. 265 (1). — P. 85—102. https://doi.org/10.1111/imr.12293.