• Развитие иммунного ответа при пневмонии, вызванной Klebsiella pneumoniae. Часть 1

Развитие иммунного ответа при пневмонии, вызванной Klebsiella pneumoniae. Часть 1

SOVREMENNAYA PEDIATRIYA.2017.5(85):94-109; doi 10.15574/SP.2017.85.94

Абатуров А. Е., Никулина А. А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр

В статье показана роль Klebsiella pneumoniae в структуре нозокомиальных пневмоний и механизмы формирования иммунного ответа, направленные на эрадикацию внеклеточного возбудителя. На основании анализа литературных источников дано современное представление о функционировании молекулярных механизмов рекогниции клебсиеллезных патоген-ассоциированных молекулярных структур и индукции внутриклеточных сигнальных путей возбуждения эффекторных клеток респираторного тракта.
Ключевые слова: пневмония, Klebsiella pneumoniae, дети, иммунный ответ, PRR.

Литература

1. Абатуров А.Е., Волосовец А.П., Юлиш Е.И. (2012). Индукция молекулярных механизмов неспецифической защиты респираторного тракта. Киев: Приватна друкарня ФО-II Сторожук О.В.: 240.

2. Абатуров А.Е., Волосовец А.П., Юлиш Е.И. (2011). Инициация воспалительного процесса при вирусных и бактериальных заболеваниях, возможности и перспективы медикаментозного управления. Харьков: ООО «С.А.М.»: 392.

3. Свитич О.А., Омарова С.М., Алиева А.И. и др. (2016). Исследование микрофлоры и врожденного иммунитета слизистых оболочек верхних дыхательных путей при внутриутробном инфицировании плода и пневмонии новорожденных. Медицинская иммунология. 18(2): 163—170. https://doi.org/10.15789/1563-0625-2016-2-163-170

4. Царегородцев А.Д., Хаертынов Х.С., Анохин В.А. и др. (2016). Клебсиеллезный неонатальный сепсис. Российский вестн. перинатол. и педиатрии. 61(4): 49—54. doi 10.21508/1027-4065-2016-61-4-49-54.

5. Matsumoto M, Tanaka T, Kaisho T. (1999, Nov 1). A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 163(9): 5039-48. PMid:10528209.

6. Zhou R, Yazdi AS, Menu P, Tschopp J. (2011, Jan 13). A role for mitochondria in NLRP3 inflammasome activation. Nature. 469(7329): 221-5. https://doi.org/10.1038/nature09663.

7. Swathi CH, Chikala R, Ratnakar KS, Sritharan V. (2016, Jul). A structural, epidemiological & genetic overview of Klebsiella pneumoniae carbapenemases (KPCs). Indian J Med Res.144(1): 21-31. https://doi.org/10.4103/0971-5916.193279.

8. Berne C, Ducret A, Hardy GG, Brun YV. (2015, Aug). Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol Spectr. 3(4). https://doi.org/10.1128/microbiolspec.MB-0018-2015.

9. Anand PK, Malireddi RK, Kanneganti TD. (2011, Feb 2). Role of the nlrp3 inflammasome in microbial infection. Front Microbiol. 2: 12. https://doi.org/10.3389/fmicb.2011.00012.

10. Hole CR. Leopold Wager CM, Mendiola AS. (2016, Aug 19). Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species. Infect Immun. 84(9): 2493-504. https://doi.org/10.1128/IAI.00103-16.

11. Bauer S. (2013, Jan). Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? Immunol Lett. 149(1-2): 85-7. https://doi.org/10.1016/j.imlet.2012.11.003.

12. Eriksson M, Serna S, Maglinao M. (2014, Apr 14). Biological evaluation of multivalent lewis X-MGL-1 interactions. Chembiochem. 15(6): 844-51. https://doi.org/10.1002/cbic.201300764.

13. Cai S, Batra S, Shen L. (2009). Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection. J Immunol. 183: 6629-38. https://doi.org/10.4049/jimmunol.0901033; PMid:19846873 PMCid:PMC2777750

14. Broberg CA, Palacios M, Miller VL. (2014). Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Reports. 6: 64: https://doi.org/10.12703/P6-64.

15. Brown G.D. (2006, Jan). Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 6(1): 33-43. https://doi.org/10.1038/nri1745.

16. Hua KF, Yang FL, Chiu HW. (2015, Sep). Capsular Polysaccharide Is Involved in NLRP3 Inflammasome Activation by Klebsiella pneumoniae Serotype K1. Infect Immun. 83(9): 3396-409. https://doi.org/10.1128/IAI.00125-15.

17. Daikos GL, Tsaousi S, Tzouvelekis LS. (2014). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 58: 2322–2328. doi 10.1128/AAC. 02166-13.

18. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. (2009, Oct). Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 10(10): 1081-8. https://doi.org/10.1038/ni.1778.

19. Schurr JR, Young E, Byrne P. (2005, Jan). Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun. 73(1): 532-45. https://doi.org/10.1128/IAI.73.1.532-545.2005.

20. Chen IY, Ichinohe T. (2015, Jan). Response of host inflammasomes to viral infection. Trends Microbiol. 23(1): 55-63. https://doi.org/10.1016/j.tim.2014.09.007.

21. Munoz-Price LS, Poirel L, Bonomo RA. (2013, Sep). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 13(9): 785-96. https://doi.org/10.1016/S1473-3099(13)70190-7.

22. Lin YT, Wang YP, Wang FD, Fung CP. (2015, Feb 18). Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol. 9: 122. https://doi.org/10.3389/fmicb.2015.00122.

23. Fouts DE, Tyler HL, DeBoy RT. (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4: e1000141. https://doi.org/10.1371/journal.pgen.1000141; PMid:18654632 PMCid:PMC2453333

24. Jeannin P, Bottazzi B, Sironi M. (2005, May). Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity. 22(5): 551-60. https://doi.org/10.1016/j.immuni.2005.03.008.

25. Bhan U, Ballinger MN, Zeng X. (2010, Mar 26). Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia. PLoS One. 5(3): e9896. https://doi.org/10.1371/journal.pone.0009896.

26. Shenderov K, Barber DL, Mayer-Barber KD. (2013, Jun 1). Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol. 190(11): 5722-30. https://doi.org/10.4049/jimmunol.1203343.

27. Cox N, Pilling D, Gomer RH. (2015, July 7). DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice. PNAS. 27(112): 8385–8390. doi 10. 1073/pnas.1500956112.

28. Miyake Y, Toyonaga K, Mori D. (2013, May 23). C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity. 38(5): 1050-62. https://doi.org/10.1016/j.immuni.2013.03.010.

29. Steichen AL, Binstock BJ, Mishra BB, Sharma J. (2013, Sep). C-type lectin receptor Clec4d plays a protective role in resolution of Gram-negative pneumonia. J Leukoc Biol. 94(3): 393-8. https://doi.org/10.1189/jlb.1212622.

30. Happel KI,. Zheng M, Young E. (2003, May 1). Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol. 170(9): 4432-6. https://doi.org/10.4049/jimmunol.170.9.4432; PMid:12707317 PMCid:PMC2841978

31. Dambuza IM, Brown GD. (2015, Feb). C-type lectins in immunity: recent developments. Curr Opin Immunol. 32: 21-7. https://doi.org/10.1016/j.coi.2014.12.002.

32. Geijtenbeek TB,. Krooshoop DJ,. Bleijs DA. (2000, Oct). DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol. 1(4): 353-7. https://doi.org/10.1038/79815.

33. Martinez N, Ketheesan N, Martens GW. (2016, Oct). Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice. Microbes Infect. 18(10): 649-655. https://doi.org/10.1016/j.micinf.2016.05.007.

34. Devaraj S, Jialal I. (2011, Jun). C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arterioscler Thromb Vasc Biol. 31(6): 1397-402. https://doi.org/10.1161/ATVBAHA.111.225508

35. Teixeira-Coelho M, Guedes J, Ferreirinha P. (2014, Mar). Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur J Immunol. 44(3): 856-66. https://doi.org/10.1002/eji.201343734.

36. Van Lieshout MH, Blok DC, Wieland CW. (2012). Differential Roles of MyD88 and TRIF in Hematopoietic and Resident Cells During Murine Gram-Negative Pneumonia. J Infect Dis. 206(9): 1415-1423. doi 10.1093/infdis/jis50.

37. Dominguez-Soto A, Sierra-Filardi E, Puig-Kroger A. (2011, Feb 15). Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on m2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. J Immunol. 186(4): 2192-200. https://doi.org/10.4049/jimmunol.1000475.

38. Drickamer K, Taylor ME. (2015, Oct). Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol. 34: 26-34. https://doi.org/10.1016/j.sbi.2015.06.003.

39. Friedlander C. (1882). Uber die scizomyceten bei der acuten fibrosen pneumonie. Arch Pathol Anat Physiol Klin Med. 87: 319–324. https://doi.org/10.1007/BF01880516

40. García-Vallejo JJ, van Kooyk Y. (2009, Jul). Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev. 230(1): 22-37. https://doi.org/10.1111/j.1600-065X.2009.00786.x.

41. Garcia-Vallejo JJ, van Kooyk Y. (2013, Oct). The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol. 34(10): 482-6. https://doi.org/10.1016/j.it.2013.03.001.

42. Geijtenbeek TB, Gringhuis SI. (2009, Jul). Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 9(7): 465-79. https://doi.org/10.1038/nri2569.

43. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. (2016, Jun 13). Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol. 7: 895. https://doi.org/10.3389/fmicb.2016.00895.

44. Koupetori M, Retsas T, Antonakos N. (2014). Hellenic Sepsis Study Group. 2014. Bloodstream infections and sepsis in Greece: over-time change of epidemiology and impact of de-escalation on final outcome. BMC Infect Dis. 14: 272. https://doi.org/10.1186/1471-2334-14-272.

45. Hoogerwerf JJ, van der Windt GJ, Blok DC. (2012, Sep 25). Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia. Mol Med. 18: 1067-75. https://doi.org/10.2119/molmed.2011.00450.

46. Wieland CW, van Lieshout MH, Hoogendijk A.J, van der Poll T. (2011, Apr). Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2. Eur Respir J. 37(4): 848-57. https://doi.org/10.1183/09031936.00076510.

47. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. (2008, Jun 12). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe. 3(6): 352-63. doi 10.1016/j.chom.2008.05.003. https://doi.org/10.1016/j.chom.2008.05.003

48. Huang X, Yang Y. (2010, Aug). Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 14(8): 787-96. https://doi.org/10.1517/14728222.2010.501333.

49. Ariizumi K, Shen GL, Shikano S. (2000, Jun 30). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 275(26): 20157-67. https://doi.org/10.1074/jbc.M909512199.

50. Li Y, Yun J, Liu L, Li Y, Wang X. (2016, Nov). Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumonia. Curr Microbiol. 73(5): 732-8. https://doi.org/10.1007/s00284-016-1117-6.

51. Shrivastava G, León-Juárez M, García-Cordero J, Meza-Sánchez DE, Cedillo-Barrón L. (2016, Dec). Inflammasomes and its importance in viral infections. Immunol Res. 64(5-6): 1101-1117. https://doi.org/10.1007/s12026-016-8873-z; PMid:27699580.

52. Van Gisbergen KP, Ludwig IS, Geijtenbeek TB, van Kooyk Y. (2005, Nov 7). Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett. 579(27): 6159-68. https://doi.org/10.1016/j.febslet.2005.09.089.

53. Pantelidou IM, Galani I, Georgitsi M. (2015, Nov). Interactions of Klebsiella pneumonia with the innate immune system vary in relation to clone and resistance phenotype. Antimicrob Agents Chemother. 59(11): 7036-43. https://doi.org/10.1128/AAC.01405-15.

54. Ye P, Garvey PB, Zhang P. (2001, Sep). Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol. 25(3): 335-40. https://doi.org/10.1165/ajrcmb.25.3.4424.

55. Jain A, Kaczanowska S, Davila E. (2014, Nov 17). IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance. Front Immunol. 5: 553. https://doi.org/10.3389/fimmu.2014.00553.

56. Kerscher B, Willment JA, Brown GD. (2013, May). The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol. 25(5): 271-7. https://doi.org/10.1093/intimm/dxt006.

57. Kingeter LM, Lin X. (2012, Mar). C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol. 9(2): 105-12. https://doi.org/10.1038/cmi.2011.58.

58. Regueiro V, Moranta D, Campos MA. (2009). Klebsiella pneumonia increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect Immun February. 77(2): 714-724. doi 10.1128/IAI.00852-08.

59. Holden VI, Breen P,  Houle S. (2016, Sep-Oct). Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 7(5): e01397-16. Published online 2016 Sep 13. https://doi.org/10.1128/mBio.01397-16.

60. Frank CG, Reguerio V, Rother M. (2013, Jul). Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell Microbiol. 15(7): 1212-33. https://doi.org/10.1111/cmi.12110.

61. Lee DH, Kim HW. (2014). Innate immunity induced by fungal β-glucans via dectin-1 signaling pathway. Int J Med Mushrooms. 16(1): 1-16. https://doi.org/10.1615/IntJMedMushr.v16.i1.10.

62. Liao PC, Chao LK, Chou JC. (2013, Jan). Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflamm Res. 62(1): 89-96. https://doi.org/10.1007/s00011-012-0555-2.

63. Jondle CN, Sharma A, Simonson TJ. (2016, Apr 1). Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia. J Immunol. 196(7): 3088-96. https://doi.org/10.4049/jimmunol.1501790.

64. March C, Moranta D, Regueiro V. (2011, Mar 25). Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J Biol Chem. 286(12): 9956-67. https://doi.org/10.1074/jbc.M110.181008.

65. Podsiad A, Standiford TJ, Ballinger MN. (2016, Mar 1). MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am J Physiol Lung Cell Mol Physiol. 310(5): L465-75. https://doi.org/10.1152/ajplung.00224.2015.

66. Jo EK, Kim JK, Shin DM, Sasakawa C. (2016, Mar). Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13(2): 148-59. doi 10.1038/cmi.2015.

67. Li B, Zhao Y, Liu C, Chen Z, Zhou D. (2014). Molecular pathogenesis of Klebsiella pneumonia. Future Microbiol. 9(9): 1071-81. https://doi.org/10.2217/fmb.14.48.

68. Mutwiri G. (2012, Jul 15). TLR9 agonists: immune mechanisms and therapeutic potential in domestic animals. Vet Immunol Immunopathol. 148(1-2): 85-9. https://doi.org/10.1016/j.vetimm.2011.05.032.

69. Branzk N, Lubojemska A, Hardison SE. (2014, Nov). Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 15(11): 1017-25. https://doi.org/10.1038/ni.2987.

70. Cai S, Batra S, Wakamatsu N. (2012, Jun 1). NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection. J Immunol. 188(11): 5623-35. doi 0.4049/jimmunol. 1200195.

71. Willingham SB, Allen IC, Bergstralh DT. (2009, Aug 1). NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 183(3): 2008-15. https://doi.org/10.4049/jimmunol.0900138.

72. Bertolotti B, Oroszová B, Sutkeviciute I. (2016, Nov 29). Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr Res. 435: 7-18. https://doi.org/10.1016/j.carres.2016.09.005.

73. Noreen M, Arshad M. (2015, Jun). Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 62(2): 234-52. https://doi.org/10.1007/s12026-015-8640-6.

74. Campos AC, Albiero J, Ecker AB. (2016, Nov 1). Outbreak of Klebsiella pneumoniae carbapenemase-producing K pneumoniae: A systematic review. Am J Infect Control. 44(11): 1374-1380. https://doi.org/10.1016/j.ajic.2016.03.022.

75. Jeannin P, Magistrelli G, Herbault N. (2003, Feb). Outer membrane protein A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs. Eur J Immunol. 33(2): 326-33. https://doi.org/10.1002/immu.200310006.

76. Paczosa MK, Mecsas J. (2016, Jun 15). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 80(3): 629-61. https://doi.org/10.1128/MMBR.00078-15.

77. Plato A, Willment JA, Brown GD. (2013, Apr). C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol. 32(2): 134-56. https://doi.org/10.3109/08830185.2013.777065.

78. Plato A, Hardison SE, Brown GD. (2015, Mar). Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 37(2): 97-106. https://doi.org/10.1007/s00281-014-0462-4.

79. Chen IT, Hsu PH, Hsu WC, Chen NJ, Tseng P.H. (2015, Jul 20). Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 5: 12300. https://doi.org/10.1038/srep12300.

80. Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. (2014, Jun 1). Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis. 209(11): 1837-46. https://doi.org/10.1093/infdis/jit820.

81. Berzi A, Ordanini S, Joosten B. (2016, Oct 13). Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulant. Sci Rep. 6: 35373. https://doi.org/10.1038/srep35373.

82. Fialkina SV, Bondarenko VM, Naboka IL. (2011, Sep-Oct). Revealing the genetic determinants of Pks-pathogenicity island in clinical strains of Enterobacteria. Zh Mikrobiol Epidemiol Immunobiol. (5): 3-7. http://bigsdb.web.pasteur.fr/klebsiella/klebsiella. html. PMid:22145340

83. Richardson MB, Williams SJ. (2014, Jun 23). MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns. Front Immunol. 5: 288. https://doi.org/10.3389/fimmu.2014.00288.

84. March C, Cano V, Moranta D. (2013). Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One. 8: e56847. https://doi.org/10.1371/journal.pone.0056847; PMid:23457627 PMCid:PMC3574025

85. Acorci-Valério MJ, Bordon-Graciani AP, Dias-Melicio LA. (2010, Feb). Role of TLR2 and TLR4 in human neutrophil functions against Paracoccidioides brasiliensis. Scand J Immunol. 71(2): 99-108. https://doi.org/10.1111/j.1365-3083.2009.02351.x.

86. Evrard B, Balestrino D, Dosgilbert A. (2010, Jan). Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumonia. Infect Immun. 78(1): 210-9. https://doi.org/10.1128/IAI.00864-09.

87. Sandiumenge A, Rello J. (2012, May). Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management. Curr Opin Pulm Med. 18(3): 187-93. https://doi.org/10.1097/MCP.0b013e328351f974.

88. Schnaar RL. (2016, Jun). Glycobiology simplified: diverse roles of glycan recognition in inflammation. J Leukoc Biol. 99(6): 825-38. https://doi.org/10.1189/jlb.3RI0116-021R.

89. Shon AS, Bajwa RP, Russo TA. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 4; 2: 107–118. https://doi.org/10.4161/viru.22718.

90. Shu C, Wang S, Xu T. (2015, May). Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes. Dev Comp Immunol. 50(1): 19-25. https://doi.org/10.1016/j.dci.2015.01.004.

91. Silva-Gomes S, Decout A, Nigou J. (2015). Pathogen-Associated Molecular Patterns (PAMPs). Encyclopedia of Inflammatory Diseases: 1-16.

92. Smith DG, Williams SJ. (2016, Feb). Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle. Carbohydr Res. 420: 32-45. https://doi.org/10.1016/j.carres.2015.11.009.

93. Soto E, Marchi S, Beierschmitt A. (2016, Mar 8). Teraction of non-human primate complement and antibodies with hypermucoviscous Klebsiella pneumoniae. Vet Res. 47: 40. https://doi.org/10.1186/s13567-016-0325-1.

94. Yang FL, Yang YL, Liao PC. (2011, Jun 17). Structure and immunological characterization of the capsular polysaccharide of a pyrogenic liver abscess caused by Klebsiella pneumoniae: activation of macrophages through Toll-like receptor 4. J Biol Chem. 286(24): 21041-51. https://doi.org/10.1074/jbc.M111.222091.

95. Lee RT, Hsu TL, Huang SK. (2011, Apr). Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology. 21(4): 512-20. https://doi.org/10.1093/glycob/cwq193.

96. Strasser D. (2012, Jan 27). Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity. 36(1): 32-42. https://doi.org/10.1016/j.immuni.2011.11.015.

97. Graham LM, Gupta V, Schafer G. (2012, Jul 27). The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem. 287(31): 25964-74. https://doi.org/10.1074/jbc.M112.384164.

98. Arce I, Martínez-Muñoz L, Roda-Navarro P, Fernández-Ruiz E. (2004, Jan). The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor. Eur J Immunol. 34(1): 210-232. https://doi.org/10.1002/eji.200324230.

99. Irvine KL, Hopkins LJ, Gangloff M, Bryant CE. (2013, Jul 4). The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Vet Res. 44: 50. https://doi.org/10.1186/1297-9716-44-50.

100. Marim FM, Franco MM, Gomes MT. (2016, Jul 12). The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol. https://doi.org/10.1007/s00281-016-0581-1.

101. Drummond RA, Saijo S, Iwakura Y, Brown GD. (2011, Feb). The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 41(2): 276-81. https://doi.org/10.1002/eji.201041252.

102. Neubauer EF, Poole AZ, Weis VM, Davy SK. (2016, Nov 15). The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. Peer J. 4: e2692. https://doi.org/10.7717/peerj.2692.

103. Bhan U, Lukacs NW, Osterholzer JJ. (2007, Sep 15). TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells. J Immunol. 179(6): 3937-46. https://doi.org/10.4049/jimmunol.179.6.3937.

104. Jeyaseelan S, Young SK, Yamamoto M. (2006, Jul 1). Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa. J Immunol. 177(1): 538-47. https://doi.org/10.4049/jimmunol.177.1.538.

105. Yang H, Zhang X, Geng J, Zheng Z, Fu Q. (2014, Nov). Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection. Pediatr Infect Dis J. 33(11): e310-5. https://doi.org/10.1097/INF.0000000000000395.

106. Tomás A, Lery L, Regueiro V. (2015, Jul 3). Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem. 290(27): 16678-97. doi 10.1074/jbc.M114. 621292.

107. Van Kooyk Y. (2008, Dec). C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans. 36 (Pt 6): 1478-81. https://doi.org/10.1042/BST0361478.

108. Van Kooyk Y, Ilarregui JM, van Vliet SJ. (2015, Feb). Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology. 220(2): 185-92. https://doi.org/10.1016/j.imbio.2014.10.002.

109. Yang CS, Shin DM, Jo EK. (2012, Mar). The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases. Int Neurourol J. 16(1): 2-12. https://doi.org/10.5213/inj.2012.16.1.2.

110. Zelensky AN, Gready JE. (2005, Dec). The C-type lectin-like domain superfamily. FEBS J. 272(24): 6179-217. https://doi.org/10.1111/j.1742-4658.2005.05031.x.

111. Zhang F, Ren S, Zuo Y. (2014, Jan). DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol. 33(1): 54-66. https://doi.org/10.3109/08830185.2013.834897.

112. Kim GD, Lee SE, Yang H. (2015, May). β2 integrins (CD11/18) are essential for the chemosensory adhesion and migration of polymorphonuclear leukocytes on bacterial cellulose. J Biomed Mater Res A. 103(5): 1809-17. https://doi.org/10.1002/jbm.a.35316.