• Развитие иммунного ответа при пневмококковой пневмонии. Часть 2
К содержанию

Развитие иммунного ответа при пневмококковой пневмонии. Часть 2

SOVREMENNAYA PEDIATRIYA.2016.5(77):54-61; doi10.15574/SP.2016.77.54 

Развитие иммунного ответа при пневмококковой пневмонии. Часть 2 

Абатуров А. Е., Агафонова Е. А., Никулина А. А.

ГУ «Днепропетровская медицинская академия МЗ Украины», Днепр, Украина


Статья посвящена изучению роли различных цитокинов (IL-1β, IL-6, IL-8, IL-10, IL-17, TNF-α, интерферонов I и II типов) в развитии воспалительного процесса при пневмококковой пневмонии. Представлена характеристика семейств интерлейкинов, хемокинов, интерферонов, участвующих в формировании адекватного воспалительного процесса и неспецифического иммунного ответа, направленного на элиминацию Streptococcus pneumoniae. Показано активное участие интерфероновой системы в антибактериальной защите (в рекогниции, процессинге, презентации антигена, трансдукции внутриклеточного сигнала, активации факторов транскрипции, продукции цитокинов).


Ключевые слова: пневмококковая пневмония, иммунный ответ, цитокины, интерфероны.


Литература

1. Абатуров А.Е. Индукция молекулярных механизмов неспецифической защиты респираторного тракта / А. Е. Абатуров, А. П. Волосовец, Е. И. Юлиш. — Киев : Приватна друкарня ФО-II Сторожук О.В., 2012. — 240 с.

2. Абатуров А. Е. Современные представления о гомеостазе железа у человека / А. Е. Абатуров // Современная педиатрия. — 2007. — № 1 (14). — С. 105—112.

3. Дефензины и дефензив-зависимые заболевания / А. Е. Абатуров, О. Н. Герасименко, И. Л. Высочина, Н.Ю. Завгородняя. — Одесса : «Издательство ВМВ», 2011. — 266 с.

4. Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue / J. Pido-Lopez, W. W. Kwok, T. J. Mitchell [et al.] // PLoS Pathog. — 2011. — Vol. 7 (12):e1002396. http://dx.doi.org/10.1371/journal.ppat.1002396.

5. Arend W. P. IL-1, IL-18, and IL-33 families of cytokines / W. P. Arend, G. Palmer, C. Gabay // Immunol Rev. — 2008. — Vol. 223. — P. 20—38. http://dx.doi.org/10.1111/j.1600-065X.2008.00624.x.

6. Blouin C. M. Interferon gamma receptor: the beginning of the journey / C. M. Blouin, С. Lamaze // Front Immunol. — 2013. — Sep. 3; 4: 267. doi: 10.3389/fimmu. 2013.00267.

7. Brenner D. Regulation of tumour necrosis factor signalling: live or let die / D. Brenner, H. Blaser, T. W. Mak // Nat. Rev. Immunol. — 2015. — Vol. 15 (6). — P. 362—74. http://dx.doi.org/10.1038/nri3834.

8. Cayrol C. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1 / C. Cayrol, J. P. Girard // Proc. Natl. Acad. Sci U S A. — 2009. — Jun 2. — Vol. 106 (22). — P. 9021—6. http://dx.doi.org/10.1073/pnas.0812690106.

9. CCL5-independent helper T lymphocyte responses to immuno-dominant pneumococcal surface protein A epitopes / R. Singh, S. Singh, D. E. Briles [et al.] // Vaccine. — 2012. — Feb. 1. — Vol. 30 (6). — P. 1181—90. http://dx.doi.org/10.1016/j.vaccine.2011.12.020.

10. Cherayil B. J. Pathophysiology of Iron Homeostasis during Inflammatory States // J Pediatr. — 2015. — Vol. 167 (4 Suppl). — P. 15—9. doi: 10.1016/j. jpeds.2015.07.015.

11. Cole J. N. Bacterial Evasion of Host Antimicrobial Peptide Defenses / J. N. Cole, V. Nizet // Microbiol Spectr. — 2016. — Vol. 4(1). doi: 10.1128/microbiolspec.VMBF-0006-2015.

12. Couper K. N. IL-10: the master regulator of immunity to infection / K. N. Couper, D. G. Blount, E. M. Riley // J. Immunol. — 2008. — May 1. — Vol. 180 (9). — P. 5771—7. http://dx.doi.org/10.4049/jimmunol.180.9.5771.

13. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling / Y. Chung, S. H. Chang, G. J. Martinez [et al.] // Immunity. — 2009. — Apr. 17. — Vol. 30 (4). — P. 576—87. http://dx.doi.org/10.1016/j.immuni.2009.02.007.

14. Decker T. The yin and yang of type I interferon activity in bacterial infection / T. Decker, M. Muller, S. Stockinger // Nat. Rev. Immunol. — 2005. — Vol. 5 (9). — P. 675—87. http://dx.doi.org/10.1038/nri1684.

15. Development of primary invasive pneumococcal disease caused by serotype 1 pneumococci is driven by early increased type I interferon response in the lung / C. E. Hughes, R. M. Harvey, C. D. Plumptre [et al.] // Infect. Immun. — 2014. — Vol. 82 (9). — P. 3919—26. http://dx.doi.org/10.1128/IAI.02067-14.

16. Difference in Resistance to Streptococcus pneumoniae Infection in Mice / D. G. Jeong, E. S. Jeong, J. H. Seo [et al.] // Lab. Anim. Res. — 2011. — Vol. 27 (2). — P. 91—8. http://dx.doi.org/10.5625/lar.2011.27.2.91.

17. Dinarello C. A. IL-1: discoveries, controversies and future directions / C. A. Dinarello // Eur. J. Immunol. — 2010. — Vol. 40 (3). — P. 599—606. http://dx.doi.org/10.1002/eji.201040319.

18. Dinarello C. A. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process / C. A. Dinarello // Am. J. Clin. Nutr. — 2006. — Vol. 83 (2). — P. 447—455. PMID: 16470011.

19. Dinarello C. A. The many worlds of reducing interleukin-1 / C. A. Dinarello // Arthritis Rheum. — 2005. — Vol. 52 (7). — P. 1960—7. http://dx.doi.org/10.1002/art.21107.

20. Early production of tumor necrosis factor-alpha by Gr-1 cells and its role in the host defense to pneumococcal infection in lungs / M. Hatta, N. Yamamoto, A. Miyazato [et al.] // FEMS Immunol. Med. Microbiol. — 2010. — Vol. 58 (2). — P. 182—92. http://dx.doi.org/10.1111/j.1574-695X.2009.00616.x.

21. Gene modulation and immunoregulatory roles of interferon gamma / B. Saha, S. Jyothi Prasanna, B. Chandrasekar, D. Nandi // Cytokine. — 2010. — Vol. 50 (1). — P. 1—14. http://dx.doi.org/10.1016/j.cyto.2009.11.021.

22. Groom J. R. CXCR3 ligands: redundant, collaborative and antagonistic functions / J. R. Groom, A. D. Luster // Immunol. Cell. Biol. — 2011. — Vol. 89 (2). — P. 207—15. http://dx.doi.org/10.1038/icb.2010.158.

23. Gu C. IL-17 family: cytokines, receptors and signaling / C. Gu, L. Wu, X. Li // Cytokine. — 2013. — Vol. 64 (2). — P. 477—85. http://dx.doi.org/10.1016/j.cyto.2013.07.022.

24. Hepatic acute phase proteins — regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kB-dependent signaling / J. G. Bode, U. Albrecht, D. Haussinger [et al.] // Eur. J. Cell Biol. — 2012. — Vol. 91 (6—7). — P. 496—505. http://dx.doi.org/10.1016/j.ejcb.2011.09.008.

25. Hepcidin and Host Defense against Infectious Diseases / K. Michels, E. Nemeth, T. Ganz, B. Mehrad // PLoS Pathog. — 2015. — Aug. 20. — Vol. 11 (8): e1004998. doi: http://dx.doi.org/10.1371/journal.ppat.1004998.

26. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6 / R. Rodriguez, C.L. Jung, V. Gabayan [et al.] // Infect. Immun. — 2014. —Vol. 82 (2). — P. 745—52. http://dx.doi.org/10.1128/IAI.00983-13.

27. Hunter C. A. IL-6 as a keystone cytokine in health and disease / C. A. Hunter, S. A. Jones // Nat Immunol. — 2015. — Vol. 16 (5). — P. 448—57. http://dx.doi.org/10.1038/ni.3153.

28. IL-17 and Th17 Cells / T. Korn, E. Bettelli, M. Oukka, V. K. Kuchroo // Annu. Rev. Immunol. — 2009. — Vol. 27. — P. 485—517. http://dx.doi.org/10.1146/annurev.immunol.021908.132710.

29. IL-18 improves the early antimicrobial host response to pneumococcal pneumoniae / F. N. Lauw, J. Branger, S. Florquin [et al.] // J. Immunol. — 2002. — Jan. 1. — Vol. 168 (1). — P. 372—8. http://dx.doi.org/10.4049/jimmunol.168.1.372.

30. IL-1beta processing in host defense: beyond the inflammasomes / M. G. Netea, A. Simon, F. van de Veerdonk [et al.] // PLoS Pathog. — 2010. — Feb. 26. — Vol. 6 (2):e1000661. http://dx.doi.org/10.1371/journal.ppat.1000661.

31. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin / E. Nemeth, S. Rivera, V. Gabayan [et al.] // J. Clin. Invest. — 2004. — Vol. 113 (9). — P. 1271—6. http://dx.doi.org/10.1172/JCI200420945.

32. Improved host defense against pneumococcal pneumoniae in platelet-activating factor receptor-deficient mice / A. W. Rijneveld, S. Weijer, S. Florquin [et al.] // J. Infect. Dis. — 2004. — Feb. 15. — Vol. 189 (4). — P. 711—6. http://dx.doi.org/10.1086/381392.

33. Innate Immune Signaling Activated by MDR Bacteria in the Airway / D. Parker, D. Ahn, T. Cohen, A. Prince // Physiol Rev. — 2016. — Vol. 96 (1). — P. 19—53. http://dx.doi.org/10.1152/physrev.00009.2015.

34. INTERFEROME: the database of interferon regulated genes / S. A. Samarajiwa, S. Forster, K. Auchettl, P. J. Hertzog // Nucleic Acids Res. — 2009. — Jan; 37(Database issue):D852—7. http://dx.doi.org/10.1093/nar/gkn732.

35. Interferon- γ production by neutrophils during bacterial pneumoniae in mice / M. Yamada, J.C. Gomez, P.E. Chugh [et al.] // Am. J. Respir. Crit. Care Med. — 2011. — May 15. — Vol. 183 (10). — P. 1391—401. http://dx.doi.org/10.1164/rccm.201004-0592OC.

36. Interleukin-1 promotes coagulation, which is necessary for protective immunity in the lung against Streptococcus pneumoniae infection / H. Yang, H. J. Ko, J. Y. Yang [et al.] // J. Infect. Dis. — 2013. — Jan. 1. — Vol. 207 (1). — P. 50—60. http://dx.doi.org/10.1093/infdis/jis651.

37. Interleukin-10 Family and Tuberculosis: An Old Story Renewed / A. E. Abdalla, N. Lambert, X. Duan, J. Xie // Int. J. Biol. Sci. — 2016. — Vol. 12 (6). — P. 710—7. http://dx.doi.org/10.7150/ijbs.13881.

38. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae / H. F. Penaloza, P. A. Nieto, N. Munoz-Durango [et al.] // Immunology. — 2015. — Vol. 146 (1). — P. 100—12. http://dx.doi.org/10.1111/imm.12486.

39. Interleukin-17A mediates acquired immunity to pneumococcal colonization / Y. J. Lu, J. Gross, D. Bogaert [et al.] // PLoS Pathog. — 2008. — Sep. 19. — Vol. 4 (9):e1000159. http://dx.doi.org/10.1371/journal.ppat.1000159.

40. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production / Kuranaga N., Kinoshita M., Kawabata T. [et al.] // J. Infect. Dis. — 2006. — Oct. 1. — Vol. 194 (7). — P. 993—1002. http://dx.doi.org/10.1086/507428.

41. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumoniae / T. van Der Poll, C. V. Keogh, X. Guirao [et al.] // J. Infect. Dis. — 1997. — Vol. 176. — P. 439—444. http://dx.doi.org/10.1086/514062.

42. Joyce E. A. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon_induced gene expression / E. A. Joyce, S. J. Popper, S. Falkow // BMC Genomics. — 2009. — Aug. 27. — Vol. 10. — P. 404. http://dx.doi.org/10.1186/1471-2164-10-404.

43. Kadioglu A. The innate immune response to pneumococcal lung infection: the untold story / A. Kadioglu, P. W. Andrew // Trends Immunol. — 2004. — Vol. 25 (3). — P. 143—9. http://dx.doi.org/10.1016/j.it.2003.12.006.

44. Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis / L. J. Albrecht, S. C. Tauber, J. Merres [et al.] // Mediators Inflamm. — 2016; 2016:7678542. http://dx.doi.org/10.1155/2016/7678542.

45. LaRock C. N. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens / C. N. LaRock, V. Nizet // Biochim Biophys Acta. — 2015. — Vol. 1848(11 Pt B). — P. 3047—54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.

46. Lemon J. K. Sensing of interleukin-1 cytokines during Streptococcus pneumoniae colonization contributes to macrophage recruitment and bacterial clearance / J. K. Lemon, M. R. Miller, J. N. Weiser // Infect. Immun. — 2015. — Vol. 83 (8). — P. 3204—12. http://dx.doi.org/10.1128/IAI.00224-15.

47. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumoniae / M. R. Jones, B. T. Simms, M. M. Lupa [et al.] // J. Immunol. — 2005. — Dec. 1. — Vol. 175 (11). — P. 7530—5. http://dx.doi.org/10.4049/jimmunol.175.11.7530; PMid:16301661 PMCid:PMC2723739..

48. Ma K. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review / K. Ma, H. Zhang, Z. Baloch // Int. J. Mol. Sci. — 2016. — May 14. — Vol. 17 (5). pii: E733. http://dx.doi.org/10.3390/ijms17050733.

49. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumoniae / J. C. Gomez, M. Yamada, J. R. Martin [et al.] // Am. J. Respir. Cell. Mol. Biol. — 2015. — Vol. 52 (3). — P. 349—64. http://dx.doi.org/10.1165/rcmb.2013-0316OC.

50. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa / K. P. Tai, K. Kamdar, J. Yamaki [et al.] // Innate. Immun. — 2015. — Vol. 21 (1). — P. 17—29. doi:10.1177/175342591351478.

51. Modulation of cytokines and chemokines, limited pulmonary vascular bed permeability, and prevention of septicemia and death with ceftriaxone and interleukin-10 in pneumococcal pneumoniae / E. Wang, M. Simard, N. Ouellet [et al.] // J. Infect. Dis. — 2000. — Vol. 182 (4). — P. 1255—9. http://dx.doi.org/10.1086/315811.

52. Murugan V. Signal transduction pathways linking the activation of alveolar macrophages with the recruitment of neutrophils to lungs in chronic obstructive pulmonary disease / V. Murugan, M. J. Peck // Exp. Lung. Res. — 2009. — Vol. 35 (6). — P. 439—85. http://dx.doi.org/10.1080/01902140902759290; PMid:19842832.

53. Palomo J. The interleukin (IL)-1 cytokine family-Balance between agonists and antagonists in inflammatory diseases / J. Palomo, D. Dietrich, P Martin // Cytokine. — 2015. — Vol. 76 (1). — P. 25—37. http://dx.doi.org/10.1016/j.cyto.2015.06.017.

54. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumoniae in mice / T. van Der Poll, C. V. Keogh, W. A. Buurman, S. F. Lowry // Am. J. Respir. Crit. Care Med. — 1997. — Vol. 155. — P. 603—608. http://dx.doi.org/10.1164/ajrccm.155.2.9032201.

55. Paterson G. K. Pneumococci: immunology of the innate host response / G. K. Paterson, C. J. Orihuela // Respirology. — 2010. — Vol. 15 (7). — P. 1057—63. http://dx.doi.org/10.1111/j.1440-1843.2010.01814.x.

56. Pathogenesis and pathophysiology of pneumococcal meningitis / B. B. Mook-Kanamori, M. Geldhoff, T. van der Poll, D. van de Beek // Clin. Microbiol. Rev. — 2011. —Vol. 24 (3). — P. 557—91. http://dx.doi.org/10.1128/CMR.00008-11.

57. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism / B. M. Schaaf, F. Boehmke, H. Esnaashari [et al.] // Am. J. Respir. Crit. Care Med. — 2003. — Aug. 15. — Vol. 168 (4). — P. 476—80. http://dx.doi.org/10.1164/rccm.200210-1164OC.

58. Poly I. C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria / X. Tian, F. Xu, W. Y. Lung [et al.] // PLoS One. — 2012. — Vol. 7 (9):e41879. http://dx.doi.org/10.1371/journal.pone.0041879.

59. Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children / E. Hoe, L. K. Boelsen, Z. Q. Toh [et al.] // PLoS One. — 2015. — Jun 12. — Vol. 10 (6). — e0129199. http://dx.doi.org/10.1371/journal.pone.0129199.

60. Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice / U. Koedel, F. Winkler, B. Angele [et al.] // Ann. Neurol. — 2002. — Vol. 51 (3). — P. 319—29. http://dx.doi.org/10.1002/ana.10103.

61. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection / A. R. Kerr, J. J. Irvine, J. J. Search [et al.] // Infect. Immun. — 2002. — Vol. 70 (3). — P. 1547—57. http://dx.doi.org/10.1128/IAI.70.3.1547-1557.2002.

62. Roles of interleukin-6 and macrophage inflammatory protein-2 in pneumolysin-induced lung inflammation in mice / A. W. Rijneveld, G. P. van den Dobbelsteen, S. Florquin [et al.] // J. Infect. Dis. — 2002. — Jan. 1. — Vol. 185 (1). — P. 123—6. http://dx.doi.org/10.1086/338008.

63. Salzman N. H. Paneth cell defensins and the regulation of the microbiome: Detente at mucosal surfaces / N. H. Salzman // Gut. Microbes. — 2010. — Nov.—Dec. — Vol. 1 (6). — P. 401—406. doi: 10.4161/gmic.1.6.1407.

64. Schape F. Interleukin-6: Biology, signaling and strategies of blockade / F. Schaper, S. Rose-John // Cytokine Growth Factor Rev. — 2015. — Vol. 26 (5). — P. 475—87. http://dx.doi.org/10.1016/j.cytogfr.2015.07.004.

65. Signalling or binding: the role of the platelet-activating factor receptor in invasive pneumococcal disease / F. Iovino, M. C. Brouwer, D. et van de Beek [et al.] // Cell Microbiol. — 2013. — Vol. 15 (6). — P. 870—81. http://dx.doi.org/10.1111/cmi.12129.

66. Srivastava S. Interleukin-18: biology and role in the immunotherapy of cancer / S. Srivastava, N. Salim, M. J Robertson // Curr. Med. Chem. — 2010. — Vol. 17 (29). — P. 3353—7. http://dx.doi.org/10.2174/092986710793176348.

67. Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium / S. Scharf, J. Zahlten, K. Szymanski [et al.] // Exp. Lung Res. — 2012. — Vol. 38 (2). — P. 100—10. http://dx.doi.org/10.3109/01902148.2011.652802.

68. Structural basis of cell apoptosis and necrosis in TNFR signaling / J. Huang, S. Yu, C. Ji, J. Li // Apoptosis. — 2015. — Vol. 20 (2). — P. 210—5. http://dx.doi.org/10.1007/s10495-014-1061-5.

69. Sоrensen O. E. Neutrophil extracellular traps — the dark side of neutrophils / O. E. Sоrensen, N. Borregaard // J. Clin. Invest. — 2016. — May 2. — Vol. 126 (5). — P. 1612—20. http://dx.doi.org/10.1172/JCI84538.

70. Tanaka T. IL-6 in inflammation, immunity, and disease / T. Tanaka, M. Narazaki, T. Kishimoto // Cold Spring Harb Perspect Biol. — 2014. — Sep. 4. — Vol. 6 (10):a016295. http://dx.doi.org/10.1101/cshperspect.a016295.

71. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis / S. A. Stanley, J. E. Johndrow, P. Manzanillo, J. S. Cox // J. Immunol. — 2007. — Mar 1. — Vol. 178 (5). — P. 3143—52. http://dx.doi.org/10.4049/jimmunol.178.5.3143.

72. TNF-alpha compensates for the impaired host defense of IL-1 type I receptor-deficient mice during pneumococcal pneumoniae / A. W. Rijneveld, S. Florquin, J. Branger [et al.] // J. Immunol. — 2001. — Nov. 1. — Vol. 167 (9). — P. 5240—6. http://dx.doi.org/10.4049/jimmunol.167.9.5240.

73. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumoniae and correlates with phagocytosis by neutrophils during early pathogenesis / Q. Xu, N. Surendran, D. Verhoeven [et al.] // Vaccine. — 2015. — Feb. 18. — Vol. 33(8). — P. 993—1000. http://dx.doi.org/10.1016/j.vaccine.2015.01.014.

74. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae / D. G. Jeong, J. H. Seo, S. H. Heo [et al.] // Lab. Anim. Res. — 2015. — Vol. 31 (2). — P. 78—85. http://dx.doi.org/10.5625/lar.2015.31.2.78.

75. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumoniae / K. Yamamoto, J. D. Ferrari, Y. Cao [et al.] // J. Immunol. — 2012. — Sep. 1. — Vol. 189 (5). — P. 2450—9. http://dx.doi.org/10.4049/jimmunol.1200634.

76. Uematsu S. Toll-like receptors and Type I interferons / S. Uematsu, S Akira // J. Biol. Chem. — 2007. — May 25. — Vol. 282 (21). — P. 15319—23. http://dx.doi.org/10.1074/jbc.R700009200.

77. Von Kockritz-Blickwede M. Interaction of Bacterial Exotoxins with Neutrophil Extracellular Traps: Impact for the Infected Host / M. von Kockritz-Blickwede, S. Blodkamp, V Nizet // Front Microbiol. — 2016. — Mar. 30. — Vol. 7. — P. 402. http://dx.doi.org/10.3389/fmicb.2016.00402.

78. Weber A. Interleukin-1 (IL-1) pathway / A. Weber, P. Wasiliew, M. Kracht // Sci. Signal. — 2010. — Jan. 19. — Vol. 3 (105):cm1. http://dx.doi.org/10.1126/scisignal.3105cm1.

79. Werno A. M. Association between pneumococcal load and disease severity in adults with pneumoniae / A. M. Werno, T. P. Anderson, D. R. Murdoch // J. Med. Microbiol. — 2012. — Vol. 61(Pt 8). — P. 1129—35. http://dx.doi.org/10.1099/jmm.0.044107-0.

80. Zhang X. Beyond anemia: hepcidin, monocytes and inflammation / X. Zhang, B. H. Rovin // Biol. Chem. — 2013. — Vol. 394 (2). — P. 231—8. http://dx.doi.org/10.1515/hsz-2012-0217.

81. Zhang X. Hepcidin expression by human monocytes in response to adhesion and pro-inflammatory cytokines / X. Zhang, B. H Rovin // Biochim Biophys Acta. — 2010. — Vol. 1800(12). — P. 1262—7. doi: 10.1016/j.bbagen. 2010.08.005.

82. Zhang Z. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice / Z. Zhang, T. B. Clarke // J. Clin. Invest. — 2009. — Vol. 119 (7). — P. 1899—909. http://dx.doi.org/10.1172/JCI36731.