• Лабораторная диагностика отдельных компонентов метаболического синдрома 
ru К содержанию

Лабораторная диагностика отдельных компонентов метаболического синдрома 

HEALTH OF WOMAN. 2016.1(107):112–121 
 

Лабораторная диагностика отдельных компонентов метаболического синдрома 
 

Кобыляк Н.Н., Кириенко Д. В.

Национальный медицинский университет им. А.А. Богомольца, г. Киев

Киевский городской клинический эндокринологический центр 
 

В статье освещены вопросы патогенеза развития и современных методов диагностики метаболического синдрома и предиабета. 
 

Ключевые слова: метаболический синдром, предиабет, гликированный гемоглобин, индекс НОМА, лептин, адипонектин. 
 

Литература:

1. Reaven GM. 1988. Role of insulin resistance in human disease. Diabetes. 37:1595–1607. http://dx.doi.org/10.2337/diab.37.12.1595http://dx.doi.org/10.2337/diabetes.37.12.1595; PMid:3056758

2. Kaplan NM. 1989. The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia and hypertension. Arch.Intern. Med. 149:1514–1520. http://dx.doi.org/10.1001/archinte.1989.00390070054005http://dx.doi.org/10.1001/archinte.149.7.1514; PMid:2662932

3. Henefeld M, Leonhardt W. 1980. Das metabolische Syndrome. Deutsch. Ges. Wes. 36:545–551.

4. DeFronzo RA. 2009. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture. Diabetologia 53;7:1270–1287. http://dx.doi.org/10.1007/s00125-010-1684-1; PMid:20361178 PMCid:PMC2877338

5. Calle EE, Thun MJ, Petrelli JM et al. 1999. Body mass index and mortality in a prospective cohort of US adults. N Engl J Med. 341:1097–1105. http://dx.doi.org/10.1056/NEJM199910073411501; PMid:10511607

6. Must A, Spadano J, Coakley EH. 1999. The disease burden associated with overweight and obesity. JAMA. 282:1523–1529. http://dx.doi.org/10.1001/jama.282.16.1523; PMid:10546691

7. Ferrannini E, Natali A, Bell P et al. 1997. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 100:1166–1173. http://dx.doi.org/10.1172/JCI119628; PMid:9303923 PMCid:PMC508292

8. Brochu M, Tchernof A, Dionne IJ et al. 2001. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 86:1020–1025. http://dx.doi.org/10.1210/jc.86.3.1020http://dx.doi.org/10.1210/jcem.86.3.7365; PMid:11238480

9. Karelis AD, Faraj M, Bastard JP et al. 2005. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 90:4145–4150. http://dx.doi.org/10.1210/jc.2005-0482; PMid:15855252

10. Karelis AD, Brochu M, Rabasa-Lhoret R. 2004. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 30:569–572. http://dx.doi.org/10.1016/S1262-3636(07)70156-8

11. Meigs JB, Wilson PW, Fox CS. 2006. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 91:2906–2912. http://dx.doi.org/10.1210/jc.2006-0594; PMid:16735483

12. Narthan DM, Davidson MB, De Fronzo RA et al. 2007. Impaired fasting glucose and impaired glucose tolerance: implication for care. Diabetes Care. 30:753–759. http://dx.doi.org/10.2337/dc07-9920; PMid:17327355

13. Stern SE, Williams K, Ferranini E et al. 2005. Identification of individuals with insulin resistance using routine measurements. Diabetes. 54:333–339. http://dx.doi.org/10.2337/diabetes.54.2.333; PMid:15677489

14. The International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009. 32;7:1327–1334. http://dx.doi.org/10.2337/dc09-9033; PMid:19502545 PMCid:PMC2699715

15. American Diabetes Associations. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010. S. suppl. 1:62–69.

16. Строев ЮИ, Цой МВ, Чурилов ЛП, Шишкин АН. 2007. Классические и современные представления о метаболическом синдроме. Ч. 2. Патогенез. Вестн. С.-Петерб. ун-та. Сер. 11, Вып. 4:3–15.

17. Bjorntorp P. 1990. «Portal» adipose tissue as the generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496. http://dx.doi.org/10.1161/01.ATV.10.4.493; PMid:2196039

18. Fried SK, Russsell CD, Grauso NL, Brolin RE. 1991. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues from obese women and men. J Clin Invest. 92:2191–2198. http://dx.doi.org/10.1172/JCI116821; PMid:8227334 PMCid:PMC288398

19. Lundgren M, Buren J, Ruge T et al. 2004. Glucocorticoids down-regulate glucose uptake capacity and insulin-signalling proteins in omental but not subcutaneous adipocytes. J Clin Endocrinol Metab. 89:2989–2997. http://dx.doi.org/10.1210/jc.2003-031157; PMid:15181089

20. Малижев ВО. 2007. Дисфункція жирової тканини як вирішальний чинник розвитку цукрового діабету 2 типу. Здоров’я України 10/1.

21. Randle PJ, Garland PB, Hales CN, Newsholme EA. 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 13;1:785–789. http://dx.doi.org/10.1016/S0140-6736(63)91500-9

22. Thiebaud D, DeFronzo RA, Jacot E et al. 1982. Effect of long chain triglyceride infusion on glucose metabolism in man. Metabolism. 31;11:1128–1136. http://dx.doi.org/10.1016/0026-0495(82)90163-9

23. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. 1983. Effect of fatty acids on glucose production and utilization in man. Journal of Clinical Investigation 72;5:1737–1747. http://dx.doi.org/10.1172/JCI111133; PMid:6138367 PMCid:PMC370462

24. Kelley DE, Mokan M, Simoneau JA, Mandarino LJ. 1993. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. Journal of Clinical Investigation 92;1:91–98. http://dx.doi.org/10.1172/JCI116603; PMid:8326021 PMCid:PMC293539

25. Dresner A, Laurent D, Marcucci M et al. 1999. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Journal of Clinical Investigation. 103;2:253–259. http://dx.doi.org/10.1172/JCI5001; PMid:9916137 PMCid:PMC407880

26. Shulman GI. 2000. Cellular mechanisms of insulin resistance. Journal of Clinical Investigation 106;2:171–176. http://dx.doi.org/10.1172/JCI10583; PMid:10903330 PMCid:PMC314317

27. Holland WL, Brozinick JT, Wang LP et al. 2008. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5:167–179. http://dx.doi.org/10.1016/j.cmet.2007.01.002; PMid:17339025

28. Cai D, Yuan M, Frantz DF. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 11:183–190. http://dx.doi.org/10.1038/nm1166; PMid:15685173 PMCid:PMC1440292

29. Groop LC, Widйn E, Ferrannini E. 1993. Insulin resistance and insulin deficiency in the pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: errors of metabolism or of methods? Diabetologia 36;12:1326–1331. http://dx.doi.org/10.1007/BF00400814; PMid:8307264

30. Майоров АЮ, Урбанова КА, Галстян ГР. 2009. Методы количественной оценки инсулинорезистентности. Ожирение и метаболизм 2:19–23.

31. Алишева ЕК, Красильникова ЕИ, Шляхто ЕВ. 2002. Методы ранней диагностики инсулинорезистентности. Артериальная гипертензия 8;1:29–34.

32. DeFronzo RA, Tobin JD, Andres R. 1979. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology 237;3:214–223.

33. Matthews DR, Hosker JP, Rudenski AS et al. 1985. Homeostasis model assessment: insulin resistance and b?cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28;7:412–419. http://dx.doi.org/10.1007/BF00280883

34. Wallace TM, Levy JC, Matthews DR. 2004. Use and abuse of HOMA modeling. Diabetes Care 27;6:1487–1495. http://dx.doi.org/10.2337/diacare.27.6.1487

35. Bonora E, Targher G, Alberichie M et al. 2000. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity. Diabetes Care. 23:57–63. http://dx.doi.org/10.2337/diacare.23.1.57; PMid:10857969

36. Garcia-Estevez DA, Araujo-Vilar D, Fiestras-Janeiro G. 2003. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices. Horm Metab Res. 35:13–17. http://dx.doi.org/10.1055/s-2003-38385; PMid:12669265

37. Дедов ИИ, Балаболкин МИ, Мамаева ГГ и др. 2005. Инсулиновая резистентность и роль гормонов жировой ткани в развитии сахарного диабета: пособие для врачей. Москва:88.

38. Friedman JM. 2009. Leptin at 14 y of age: an ongoing story. Am. J. Clin. Nutr. 89(Suppl.):973–979. http://dx.doi.org/10.3945/ajcn.2008.26788B; PMid:19190071 PMCid:PMC2667654

39. Tartaglia LA, Dembski M, Weng X et al. 1995. Identification and expression cloning of a leptin receptor, OB-R. Cell. 83:1263–1271. http://dx.doi.org/10.1016/0092-8674(95)90151-5

40. Wang MY, Zhou Y, Newgard CB, Unger RH. 1998. A novel leptin receptor isoform in rat. FEBS Lett. 392:87–90. http://dx.doi.org/10.1016/0014-5793(96)00790-9

41. Lee GH, Proenca R, Montez JM et al. 1996. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 379:632–635. http://dx.doi.org/10.1038/379632a0; PMid:8628397

42. Minokoshi Y, Kahn BB. 2003. Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem. Soc. Trans. 31:196–201. http://dx.doi.org/10.1042/bst0310196; PMid:12546684

43. Steinberg GR, Rush JWE, Dyck DJ. 2003. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am. J. Physiol. Endocrinol. Metab. 284:648–654. http://dx.doi.org/10.1152/ajpendo.00318.2002; PMid:12441311

44. Mohammed J, Zobair Y. 2008. Adipokines and pathogenesis of non-alcoholic fatty liver disease. AnCha Baranova:192.

45. Lord GM, Matarese G, Howard JK et al. 1998. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 394;6696:897–901. http://dx.doi.org/10.1038/29795; PMid:9732873

46. Zhao T, Hou M, Xia M et al. 2005. Globular adiponectin decreases leptin-induced tumor necrosis factor-a expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways. Cell Immunol. 238;1:19–30. http://dx.doi.org/10.1016/j.cellimm.2005.12.002; PMid:16438946

47. Shen J, Sakaida I, Uchida K [et al.]. 2005. Leptin enhances TNF-a production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 77:1502–1515. http://dx.doi.org/10.1016/j.lfs.2005.04.004; PMid:15979653

48. Faggioni R, Jones-Carson J, Reed DA et al. 2000. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor-a and ІЛ-18. Proc. Natl Acad. Sci. USA. 97;5:2367–2372. http://dx.doi.org/10.1073/pnas.040561297; PMid:10681432 PMCid:PMC15807

49. Matarese G, Di Giacomo A, Sanna V et al. 2001. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166;10:5909–5916. http://dx.doi.org/10.4049/jimmunol.166.10.5909

50. Gorden P, Gavrilova O. 2003. The clinical uses of leptin. Curr Opin Pharmacol. 3:655–659. http://dx.doi.org/10.1016/j.coph.2003.06.006; PMid:14644019

51. Кобиляк НМ, Кондро ММ, Вірченко ОВ, Фалалєєва ТМ. 2013. Патофізіологічна роль лептину у розвитку ожиріння та супутніх захворювань. Експериментальна та клінічна фізіологія і біохімія 3(63):55–63.

52. Pajvani UB, Du X, Combs TP et al. 2003. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem. 278;11:9073 – 9085. http://dx.doi.org/10.1074/jbc.M207198200; PMid:12496257

53. Кобиляк НМ, Михальчишин ГП, Савченюк ОА, Фалалєєва ТМ. 2013. Патофізіологічна роль адипонектину в розвитку ожиріння та супутніх захворювань. Світ Медицини та Біології 3(40);частина 2:81–87.

54. Михальчишин ГП, Боднар ПМ, Кобиляк НМ. 2013. Гіпоадипонектинемія у хворих на цукровий діабет типу 2 з неалкогольною жировою хворобою печінки. Ендокринологія 18;2:18–25.

55. Pajvani UB, Hawkins M, Combs TP et al. 2004. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279;13:12152–12162. http://dx.doi.org/10.1074/jbc.M311113200; PMid:14699128

56. Bobbert T, Rochlitz H, Wegewitz U et al. 2005. Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes. 54;5:2712–2719. http://dx.doi.org/10.2337/diabetes.54.9.2712

57. Yamauchi T, Kamon J, Ito Y et al. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423;6941:762–769. http://dx.doi.org/10.1038/nature01705; PMid:12802337

58. Kadowaki T, Yamauchi N, Kubota N et al. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 116;7:1784–1792. http://dx.doi.org/10.1172/JCI29126; PMid:16823476 PMCid:PMC1483172

59. Tilg H, Moschen AR. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 6;10:772–783. http://dx.doi.org/10.1038/nri1937; PMid:16998510

60. Hara K, Boutin P, Mori Y et al. 2002. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 51:536–540. http://dx.doi.org/10.2337/diabetes.51.2.536; PMid:11812766

61. Vasseur F, Helbecque N, Dina C et al. 2002. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocytesecreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet. 11:2607–2614. http://dx.doi.org/10.1093/hmg/11.21.2607; PMid:12354786

62. Gu HF, Abulaiti A, Ostenson CG et al. 2004. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes. 53 (Suppl. 1):31–35. http://dx.doi.org/10.2337/diabetes.53.2007.S31

63. Whitehead JP, Richards AA, Hickman IJ. 2006. Adiponectin-a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 8;3:264–280. http://dx.doi.org/10.1111/j.1463-1326.2005.00510.x; PMid:16634986

64. Kubota N, Terauchi Y, Yamauchi T et al. 2002. Disruption adiponectin causes insulin resistance neo-intimal formation. J Biol Chem. 277:25863–25866. http://dx.doi.org/10.1074/jbc.C200251200; PMid:12032136

65. Maeda N, Shimomura I, Kishida K [et al.]. 2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 8:731–737. http://dx.doi.org/10.1038/nm724; PMid:12068289

66. Combs TP, Pajvani UB, Berg AH et al. 2004. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 145:367–383. http://dx.doi.org/10.1210/en.2003-1068; PMid:14576179

67. Yamauchi T, Kamon J, Minokoshi Y et al. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8;11:1288–1295. http://dx.doi.org/10.1038/nm788; PMid:12368907

68. Wolf AM, Wolf D, Rumpold H et al. 2004. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323:630–635. http://dx.doi.org/10.1016/j.bbrc.2004.08.145; PMid:15369797

69. Kobayashi HN, Ouchi S, Kihara K et al. 2004. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 94;4:27–31. http://dx.doi.org/10.1161/01.RES.0000119921.86460.37; PMid:14752031 PMCid:PMC4374479

70. Fukuhara A, Matsuda M, Nishizawa M et al. 2007. Retraction. Science 318;5850:565.

71. Fukuhara A, Matsuda M, Nishizawa M et al. 2005. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307;5708:426–430. http://dx.doi.org/10.1126/science.1097243; PMid:15604363

72. Samal B, Sun Y, Stearns G et al. 2007. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14:1431–1437. http://dx.doi.org/10.1128/MCB.14.2.1431

73. Moschen AR, Kaser A, Enrich B et al. 2007. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178:1748–1758. http://dx.doi.org/10.4049/jimmunol.178.3.1748; PMid:17237424

74. Berndt J, Kloting N, Kralisch S et al. 2005. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54:911–2916. http://dx.doi.org/10.2337/diabetes.54.10.2911

75. Dogru T, Sonmez A, Tasci I et al. 2005. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance. Diabetes Res. Clin. Pract. 76:24–29. http://dx.doi.org/10.1016/j.diabres.2006.07.031; PMid:16956691

76. Tilg H, Diehl AM. 2000. Cytokines in alcoholic and non-alcoholic steatohepatitis. N Engl J Med. 343:1467–1476. http://dx.doi.org/10.1056/NEJM200011163432007; PMid:11078773

77. Михальчишин ГП, Боднар ПМ, Кобиляк НМ. 2014. Рівень чинника некрозу пухлин альфа і його кореляційні взаємозв’язки у хворих на цукровий діабет типу 2 із неалкогольною жировою хворобою печінки. Клінічна ендокринологія та ендокринна хірургія 1(46):33–40.

78. Tartaglia LA, Goeddel DV. 1992. Two TNF receptors. Immunol. Today 13:151–153. http://dx.doi.org/10.1016/0167-5699(92)90116-O

79. Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 259:87–91. http://dx.doi.org/10.1126/science.7678183; PMid:7678183

80. Uysal KT, Wiesbrock SM, Marino MW et al. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 389:610–614. http://dx.doi.org/10.1038/39335; PMid:9335502

81. Hirosumi J, Tuncman G, Chang L et al. 2002. A central role for JNK in obesity and insulin resistance. Nature. 21;420:333–336. http://dx.doi.org/10.1038/nature01137; PMid:12447443

82. Yuan M, Konstantopoulos N, Lee J et al. 2001. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk-b. Science. 293:1673–1677. http://dx.doi.org/10.1126/science.1061620; PMid:11533494

83. Shoelson SE, Lee J, Yuan M. 2003. Inflammation and the IKK-b /I-kB/NF-kB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27:49–52. http://dx.doi.org/10.1038/sj.ijo.0802501; PMid:14704745

84. Gao Z, Hwang D, Bataille F et al. 2002. Serine phosphorylation of insulin receptor substrate 1 by inhibitor кB kinase complex. J. Biol. Chem. 277:48115–48121. http://dx.doi.org/10.1074/jbc.M209459200; PMid:12351658

85. Cai D, Yuan M, Frantz DF et al. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-b and NF-кB. Nat. Med. 11:183–190. http://dx.doi.org/10.1038/nm1166; PMid:15685173 PMCid:PMC1440292

86. Hundal RS, Petersen KF, Mayerson AB et al. 2002. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109:1321–1326. http://dx.doi.org/10.1172/JCI0214955; PMid:12021247 PMCid:PMC150979

87. Dinarello CA. 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–3732. http://dx.doi.org/10.1182/blood-2010-07-273417; PMid:21304099 PMCid:PMC3083294

88. Moschen AR, Molnar C, Enrich B et al. 2011. Adipose and liver expression of IL-1 family members in morbid obesity and effects of weight loss. Mol Med. 17;7–8:840–845.

89. Михальчишин ГП, Боднар ПМ, Кобиляк НМ. 2013. Рівень ІЛ-1b та його кореляційні взаємозв’язки у хворих на цукровий діабет типу 2 із неалкогольною жировою хворобою печінки. Ендокринологія 4:21–28.

90. Nov O, Kohl A, Lewis EC et al. 2010. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151:4247–4256. http://dx.doi.org/10.1210/en.2010-0340; PMid:20660063

91. Somm E, Cettour-Rose P, Asensio C et al. 2006. Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia. 49:387–393. http://dx.doi.org/10.1007/s00125-005-0046-x; PMid:16385385

92. Owyang AM, Maedler K, Gross L et al. 2010. XOMA 052, an anti-IL-1{beta} monoclonal antibody, improves glucose control and {beta}-cell function in the diet-induced obesity mouse model. Endocrinology 151:2515–2527. http://dx.doi.org/10.1210/en.2009-1124; PMid:20332197

93. Larsen CM, Faulenbach M, Vaag A et al. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 356:1517–1526. http://dx.doi.org/10.1056/NEJMoa065213; PMid:17429083

94. Kim KH, Lee K, Moon YS, Sul HS. 2001. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276:11252–11256. http://dx.doi.org/10.1074/jbc.C100028200; PMid:11278254

95. Steppan CM, Bailey ST, Bhat S et al. 2001. The hormone resistin links obesity to diabetes. Nature 409:307–312. http://dx.doi.org/10.1038/35053000; PMid:11201732

96. Banerjee RR, Lazar MA. 2003. Resistin: molecular history and prognosis. J Mol Med. 81:218–226. PMid:12700889

97. Rangwala SM, Rich AS, Rhoades B et al. 2004. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes. 53:1937–1941. http://dx.doi.org/10.2337/diabetes.53.8.1937; PMid:15189975

98. Rajala MW, Obici S, Scherer PE, Rossetti L. 2005. Adipose-derived resistin and gut-derived resistin-like molecule- selectively impair insulin action on glucose production. J. Clin. Invest. 111:225–230. http://dx.doi.org/10.1172/JCI16521; PMid:12531878 PMCid:PMC151868

99. Satoh H, Nguyen MT, Miles PD et al. 2004. Adenovirus-mediated chronic ‘hyper-resistinemia’ leads to in vivo insulin resistance in normal rats. J. Clin. Invest. 114:224–231. http://dx.doi.org/10.1172/JCI20785; PMid:15254589 PMCid:PMC449745

100. Qi Y, Nie Z, Lee YS et al. 2006. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes 55:3083–3090. http://dx.doi.org/10.2337/db05-0615; PMid:17065346

101. Emanuelli B, Peraldi P, Filloux J et al. 2001. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor in the adipose tissue of obese mice. J. Biol. Chem. 276:47944–47949. PMid:11604392

102. Nagaev J, Smith U. 2001. Insulin resistence and type 2 diabetes are not related to resistin expression in human fat cells or skelet muscle. Biochem Biophys Re Commun. 285:561–564. http://dx.doi.org/10.1006/bbrc.2001.5173; PMid:11444881

103. Kielstein JT, Becker B, Graf S et al. 2003. Increased resistin blood levels are not associated with insulin resistance in patients with renal disease. Am J Kidney Dis. 42:62–66. http://dx.doi.org/10.1016/S0272-6386(03)00409-8

104. Vozarova B, Fernandez-Real JM, Knowler WC et al. 2003. The interleukin-6 (-174) G/C promoter polymorphism is associated with type-2 diabetes mellitus in Native Americans and Caucasians. Hum. Genet. 112:409–413. PMid:12589429

105. Wang CZ, Wang Y, Di A et al. 2005. 5-amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channeldependent and-independent pathways. Biochem. Biophys. Res. Commun. 330:1073–1079. http://dx.doi.org/10.1016/j.bbrc.2005.03.093; PMid:15823553

106. Weigert C, Hennige AM, Brodbeck K et al. 2005. Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. Am. J. Physiol. Endocrinol. Metab. 289:251–257. http://dx.doi.org/10.1152/ajpendo.00448.2004; PMid:15755769

107. Pickup JC. 2004. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823. http://dx.doi.org/10.2337/diacare.27.3.813; PMid:14988310

108. Vozarova B, Weyer C, Hanson K et al. 2001. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes. Res. 9:414–417. http://dx.doi.org/10.1038/oby.2001.54; PMid:11445664

109. Bastard JP, Maachi M, Van Nhieu JT et al. 2002. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J. Clin. Endocrinol. Metab. 87:2084–2089. http://dx.doi.org/10.1210/jcem.87.5.8450; PMid:11994345

110. Carrey AL, Bruce CR, Sacchetti M et al. 2004. Interleukin-6 and tumor necrosis factor – alpha are not increased in petients with Type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia. 47:1029–1037.

111. Rotter V, Nagaev I, Smith U. 2003. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278:45777–45784. http://dx.doi.org/10.1074/jbc.M301977200; PMid:12952969

112. Fasshauer M, Kralisch S, Klier M et al. 2003. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 301:1045–1050. http://dx.doi.org/10.1016/S0006-291X(03)00090-1

113. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52:2784–2789. http://dx.doi.org/10.2337/diabetes.52.11.2784; PMid:14578297

114. Rieusset J, Bouzakri K, Chevillotte E et al. 2004. Suppressor of cytokine signalling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53:2232–2241. http://dx.doi.org/10.2337/diabetes.53.9.2232; PMid:15331532

115. Wallenius V, Wallenius K, Ahren B et al. 2002. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8:75–79. http://dx.doi.org/10.1038/nm0102-75; PMid:11786910

116. Kim HJ, Higashimori T, Park SY et al. 2004. Differential effects of interleukin-6 and-10 on skeletal muscle and liver insulin action in vivo. Diabetes. 53:1060–1067. http://dx.doi.org/10.2337/diabetes.53.4.1060; PMid:15047622

117. Mooney RA. 2007. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102:816–818. http://dx.doi.org/10.1152/japplphysiol.01208a.2006; PMid:17284655

118. Lee MD, Zentella A, Vine W et al. 1987. Effect of endotoxin-induced monokines on glukose metabolism in the muscle cell line L6. Proc. Natl. Alad. Sci. USA. 84:2590–2594. http://dx.doi.org/10.1073/pnas.84.9.2590

119. Шварц В. 2010. Двойственная роль интерлейкина-6 в развитии инсулинорезистентности. Патологическая физиология и экспериментальная терапия 1:40–47.