The correct choice of suture material is the key to successful treatment in abdominal surgery, particularly pediatric surgery. Given this, experimental studies on the effect of sutures made with different surgical threads are one of the most urgent surgery needs.

The aim – to conduct a comparative analysis of early morphological and functional changes in the perivulnar region of the mucosa of the rabbit cecum after suturing with polyglactin-910 and polycaprolactone modified with L-arginine.

Materials and methods. The study was conducted on 25 rabbits aged 8–10 months in compliance with all bioethical standards and recommendations. The control group consisted of 5 animals; the first experimental group, in which synthetic surgical polyfilamentous absorbable suture polyglactin-910 was used to close the wound defect, and the second experimental group, in which monofilamentous absorbable suture polycaprolactone modified with L-arginine was used to close the wound defect, consisted of 10 rabbits each. All stages of surgical access and sampling of intact cecal wall tissues were performed in the control group. The rabbits of the experimental groups underwent colotomy followed by suturing of the large intestine with appropriate suture material. Each experimental group was divided into two subgroups (5 rabbits in each), in which the condition of the perivulvar region was studied on days 3 and 7, respectively. The animals were not euthanised; during the second operation, tissues of the cecum were taken from the sutured area and the formed scar at the appropriate time. Histological, semi-thin serial sections, electron microscopic, morphometric, and statistical methods were used.

Discussion. The average thickness of the cecal mucosa after colotomy increased significantly on days 3–7 when using both surgical threads, but when using polycaprolactone modified with L-arginine, the above indicator was 63.06% and 22.46% lower, respectively, due to a decrease in hyperhydration of the connective tissue component of the mucosa, leukocyte infiltration in the perivulnar area and acceleration of reparative processes.

Conclusions. Polycaprolactone modified with L-arginine has a positive effect on the course of morphological and functional processes in the perivulnar region of the rabbit cecum’s mucosa. In terms of its characteristics, it is not worse than polyglactin-910.

No conflict of interests was declared by the authors.
Introduction

The scientific achievements of modern medicine make it possible to introduce more and more new means and treatment methods into surgical practice. Currently, the effectiveness of surgical interventions depends not only on the surgeon's professionalism but also on the quality of material and technical support, particularly on the properties of the suture material [9,10,15]. In abdominal surgery, particularly in pediatric surgery, the correct choice of suture material is the key to successful and rapid wound healing [13]. In pediatric surgery, the need for surgical interventions on the large intestine arises in several pathological conditions: acute appendicitis, congenital malformations (stenosis and atresia of the rectum, dolichosigmoid, meckelocolon), adhesive disease, intestinal invasion, in particular, ileocecal invasion [4,8,14]. In view of this, experimental studies to investigate the effect of sutures applied with different surgical threads on the morphological and functional state of large intestine tissues are considered relevant, timely and promising, and the development of new modified surgical suture materials is one of the urgent needs of modern abdominal surgery [1,3,6]. There are various attempts to improve the quality of surgical suture materials: changing sterilisation methods, using other sources of biological raw materials, and adding chemicals. In particular, absorbable sutures modified with L-arginine have been proposed. L-arginine is a conditionally essential amino acid that is a cellular regulator of many vital body functions and is involved in regulating the tone of the smooth muscle component of the walls of blood vessels, bronchi and intestines [2,11]. L-arginine's antihypoxic and reparative properties may be useful in abdominal surgery, as laparotomy causes a systemic inflammatory response, oxidative-nitrosative stress, and disorders of lipid and carbohydrate metabolism [5,12].

The aim of the study – to conduct a comparative analysis of early morphological and functional changes in the perivulnar region of the mucus membrane of the rabbit cecum after suturing with polylactin-910 (PG-910) and polycaprolactone modified with L-arginine (PCL-MA).

Materials and methods of the research

The study was conducted on 25 sexually mature outbred domestic rabbits of both sexes aged 8–10 months and weighing (2.62±0.21) kg. Rabbits were chosen because of the similarity of the intestinal wall structure to that of humans. The diameter of the cecum is approximately the same as that of the corresponding intestine of humans. The diameter of the cecum is approximately the same as that of the corresponding intestine of humans. The diameter of the cecum is approximately the same as that of the corresponding intestine of humans. The diameter of the cecum is approximately the same as that of the corresponding intestine of humans.

We divided animals into three groups: control 5 rabbits) and two experimental groups (10 animals in each). The control group was used to study the structural features and morphometric parameters of the cecum wall in rabbits under normal conditions. The rabbits of the first experimental group underwent colotomy followed by suturing of the large intestine with PG-910, and the second experimental group – with PCL-MA. Each experimental group was divided into two subgroups 5 rabbits in each), in which the condition of the perivulnar area and scar formation were studied on days 3 and 7, respectively.
In animals of the control group, all stages of surgical access to the large intestine and sampling of intact tissues of the cecum wall were performed. After surgical access, rabbits of the first experimental group underwent a colotomy performed with a scalpel through all layers of the cecum wall 4 cm in length; the wound edges were sutured with synthetic polyfilament absorbable suture PG-910. In the second experimental group, after surgical access, the animals underwent a similar colotomy, and the wound edges were sutured with a synthetic monofilament absorbable suture PCL-MA. An atraumatic needle with a 3-metric size thread was used for suturing.

The animals were not euthanised; during the second operation, large intestine tissue was taken from the sutured area at the appropriate time.

Before the experiment, the animals were prepared. For one day, the animals were not fed and kept in a «hungry period», and for 3 to 4 hours, rabbits were not allowed to drink. Before surgery, the animals were sedated by intramuscular injection of a Lytic cocktail (0.2 ml of 1% Sol. Dimedroli, 0.1 ml of 0.1% Sol. Atropinii Sul-fatis and 0.1 ml of 10% Sol. Nalbufini). 5.5–5.7 ml of 4% Ubistesini forte was used for local anaesthesia. After preoperative treatment and preparation of the surgical field, an upper-middle-lower midline laparotomy was performed. The colotomy was performed by opening the cecum wall, 3–4 cm long, between the omental taenia and free taenia, parallel to them and perpendicular to the haustra. After dissection, the cecum wall was sutured with a double-row suture. For the first row of sutures, continuous screw-in Schmiden suture was used. For the second, clean row of sutures, a Lambert’s sero-serous interrupted suture was used.

To suture the surgical wound in the animals of the first experimental group, we used PG-910, a modern suture material that is bio inert, does not cause general toxic effects on the body and allergic reactions during degradation, is resistant to infection, is sufficiently reliable, atraumatic, does not cause an absorbing effect, has good surgical and technical characteristics, and therefore has been used in surgical practice for a long time [7].

In order to study and compare the effectiveness in animals of the second experimental group, the novel domestic surgical suture material PCL-MA was used.

PG-910 and PCL-MA are very similar in terms of their characteristics and resorption time, but PG-910 is a polyfilament suture, while PCL-MA is a monofilament suture.

The following methods were used to study the morphological and functional features of the mucous membrane of the cecum in the normal and the dynamics of the experiment on days 3 and 7: histological – to determine the general morphology of the wall of the mucous membrane of the cecum; the method of semi-thin serial sections – to detail the histological structures of the intestinal wall; electron microscopy – to determine the processes of remodeling of ultrastructures in the dynamics of the experiment; reconstruction method – for visualization of the shape, size and relative position of the components of the cecum; morphometric method – for analysis of quantitative changes in angioarchitectonics and histocytotopography of structural elements; statistical method – to establish the reliability of the dynamics of quantitative changes in structural components.

The studies were conducted in compliance with the principles of bioethics, following the provisions of the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (Strasbourg, 1986), Council of Europe Directive 2010/63/EU and the Law of Ukraine No. 3447-IV «On the Protection of Animals from Cruelty», on 25th, 2015: mature outbred domestic rabbits of both sexes aged 8–10 months and weighing (2.62±0.21) kg. The animals were kept in the vivarium of Poltava State Medical University in accordance with sanitary and hygienic standards and rules. Surgical interventions were performed in the animal operating room of the Department of Anatomy with Clinical Anatomy and Operative Surgery of Poltava State Medical University.

Results of the study

A comprehensive morphological study shows that the cecum wall in rabbits is formed of 4 layers: mucosa, sub-
mucosa, muscular layer and serosa. The average thickness of the mucous membrane of the cecum in rabbits was (133.74±5.03) μm. Circular folds and crypts form the relief of the rabbit cecum.

Crypts were visualized as a tubular ingrowth of the mucosal epithelial layer into its own lamina propria. The average diameter of the crypt was (20.48±1.63) μm, and its average depth was (79.64±11.01) μm. The cellular composition of the crypts of the mucous membrane of the cecum of rabbits was represented by columnar epithelial cells with a brush border, columnar epithelial cells without a brush border, goblet cells, and Paneth cells. They also included single endocrinocytes of the diffuse endocrine system associated with the mucosa and intraepithelial lymphocytes (Fig. 1).

Morphometrically, it was determined that the average number of columnar epithelial cells with a brush border in the crypts of the mucous membrane of the cecum was 12.74±1.12, the average number of goblet cells is determined at the level of 42.02±3.42, the average number of Paneth cells is 11.67±1.84, and the average number of enteroendocrine cells is 0.84±0.04.

Cellular elements of connective tissue and leucocyte cells were visualized in the mucous membrane of the rabbit cecum. The average number of fibroblasts was 28.94±1.48, the average number of plasmacytes was 0.78±0.04, the average number of macrophages was 1.84±0.08, the average number of monocytes was 0.68±0.04, the average number of lymphocytes was 14.48±1.22, and the average number of smooth muscle cells was 34.46±0.42.

The hemomicrocirculatory bed of the mucous membrane of the cecum in rabbits is formed by arterioles, precapillary arterioles, capillaries, post capillary venules and venules.

Morphometrically, it was found that the average outer diameter of arterioles in rabbits of the control group was (15.71±0.96) μm, capillaries – (8.18±0.64) μm, venules – (16.66±1.12) μm. The mean values of the diameter of the lumens of the elements of the hemomicrocirculatory bed of the mucous membrane of the cecum of rabbits of the control group were: for arterioles – (10.52±0.78) μm, capillaries – (7.46±0.56) μm, venules – (11.77±0.92) μm. The average thickness of the vascular walls of arterioles was (6.56±0.46) μm, capillaries – (2.34±0.18) μm, venules – (7.27±0.84) μm.

After the experimental colotomy of the cecum, an inflammatory process of the perivulnar area was observed in the early stages. In animals on day 3 of observation, the intestinal wall mucosa was thickened due to the expansion of collagen fiber bundles of loose fibrous connective tissue, clearly defined hyperhydration, significant hemorrhages and leucocyte infiltration around the formed blood clots (Fig. 2).

The average thickness of the mucous membrane, both when using PG-910 sutures and PCL-MA sutures, increased significantly (p<0.05) compared to the control group. However, with the use of PCL-MA, the above indicator was 63.06% lower than with PG-910 ((261.45±8.76) μm and (414.59±7.16) μm, respectively) due to a decrease in hyperhydration of the connective tissue component of the mucous membrane and leucocyte infiltration in the perivulnar region (Fig. 3). The same trend was observed on day 7 of observation when the average thickness of the mucous membrane when using PG-910 suture was 22.46% significantly higher

Notes: 1 – perivulnar area at the border of the mucosa and submucosa; 2 – blood clots; 3 – leucocyte infiltrate.

Fig. 2. Morphological changes in the perivulnar area of the rabbit cecum wall on day 3 after suturing the wound defect with PG-910 surgical thread. Paraffin section. Hematoxylin and eosin staining. Magnification: A – Lens ×10, Eyepiece ×10; B – Lens ×100, Eyepiece ×10.
than when suturing the intestinal wall with PCL-MA ((276.41±8.78) μm and (214.21±8.12) μm, respectively). The vessels of the hemomicrocirculatory bed also actively responded to the inflammatory process that occurred as a result of experimental colotomy (Fig. 4).

The arterioles of the mucosa and submucosa of the cecum in the area of the wound defect statistically significantly (at p<0.05) reacted with an expansion of the average outer diameters starting from day 3 of the experiment, but when using PCL-MA, the vasodilation of the arterioles was 21.42% less than when using PG-910 ((22.23±2.98) μm and (26.27±3.02) μm, respectively); after seven days of the experiment, the above indicator was statistically significantly lower by 26.92% compared with PG-910 ((22.23±2.98) μm and (26.27±3.02) μm, respectively). The capillaries in the mucous membrane already after three days of the experimental study reacted with vasconstriction, but when using PCL-MA, the narrowing of the total diameter of the capillaries was 13.31% less than when using PG-910 ((5.79±0.87) μm and (5.11±0.63) μm, respectively); after seven days of the experiment, the above indicator was not statistically significantly different for both surgical threads. Venules in the area of the wound defect statistically significantly (at p<0.05) responded with an expansion of the average diameters on day 3 of the experiment, but when using PCL-MA, vasodilation of venules was 24.61% less compared to PG-910 ((22.61±2.12) μm and (29.99±2.84) μm, respectively). After seven days of the experiment, the above indicator was also statistically significantly lower by 21.39% compared with PG-910 ((22.61±2.12) μm and (29.99±2.84) μm, respectively). The results indicate that L-arginine, which enters the perivulnar area with PCL-MA suture, has a positive effect on the microhemodynamic processes in the area of the wound defect.

In the area of the wound defect on day 3 of the experimental study, mucosal crypts were located deeper relative to the submucosa compared to the control group (Fig. 5). But, compared to PG-910, when using PCL-MA, their depth was 15.84% less ((87.48±4.28) μm and (92.42±3.24) μm, respectively). A similar trend was observed on day 7 ((89.34±4.32) μm and (94.48±4.32) μm, respectively) when this depth was 17.59% less (Fig. 6).

Changes in the histotopography of the crypts of the mucosa of the cecum in the perivulnar region directly depend on quantitative changes in the number of its cellular components. Thus, on the 3rd day of the experimental study, the average number of columnar epithelial cells with a brush border decreased sharply, but when using PCL-MA, this indicator was 16.57% lower than when using PG-910 (3.12±0.24 and 3.74±0.24 respectively). After seven days of the experimental study, their average number increased sharply, but when PCL-MA was used, this indicator was 17.71% lower compared to PG-910 (72.62±6.12 and
The obtained results of a comprehensive morphological study indicate that PCL-MA is an improved surgical suture material that positively affects the course of morphological and functional processes in the perivulnar area of the mucous membrane of the rabbit cecum for 3–7 days, stimulates tissue regeneration and increases blood flow. Such a modified thread is not conceded by its characteristics to PG-910 and, therefore, can be widely used in surgical practice.

No conflict of interests was declared by the authors.
References/Literatura

Відомості про авторів: