Meta — to study the level of the serum fatty acids in children with autism spectrum disorders (ASD); to compare omega-6/omega-3 ratio depending on the clinical manifestation epileptic encephalopathy (EE) and ASD; and electroencephalography data (EEG).

Results. Indicators of fatty acid concentration indicate that the serum of children showed a significantly low level of omega-3 polyunsaturated fatty acids (PUFA) and saturation of omega-6 by PUFA in all groups of children. The level of concentration of the main metabolites of essential fatty acids reflects the imbalance due to deficiency of essential linoleic acid and its metabolite — docosapentaenoic acid, especially in children with ASD and epileptic changes in the EEG (group 2), (p<0.01). Among the omega-6 PUFA found a high content of essential linoleic acid and its metabolite — arachidonic acid, which causes the total excess of this group of PUFA, more pronounced in the groups 1 and 2.

Conclusions. The data is a reliable evidence that children with ASD, epileptic seizures and epileptiform changes in the EEG have higher levels of omega-6 PUFA and arachidonic acid and omega-3 and docosahexaenoic acid deficiency. The most pronounced imbalance in both the ratio of omega-6 / omega-3 and arachidonic acid / docosahexaenoic acid in the group of children with ASD and epileptiform changes in the EEG. These results may support the theory of changes in the properties of the phospholipid membrane and ion channels of nerve cells and require further study using electron microscopy.

The research was carried out in accordance with the principles of the Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of all participating institutions. The informed consent of the patient was obtained for conducting the studies.

Keywords: autism spectrum disorders, epileptic seizures, essential fatty acids, monounsaturated fatty acids, unsaturated fatty acids, fatty acid unsaturation index.
У сучасному суспільстві протягом останніх десятиліть зросла кількість хворих із розладами аутистичного спектра (PAC), що викликає занепокоєння серед багатьох фахівців. Зокрема, поширеність PAC серед дітей США зросла з 8,08 випадку на 1000 дітей у 2004 р. до 20,53 випадку на 1000 дітей у 2014 р., що становить близько 2% дитячого населення [11]. Більшість науковців пояснюють таке зростання поліпшенням діагностики, зокрема, уточненням і розширенням існуючих діагностичних критеріїв захворювання та збільшенням обізнаності медичних працівників, педагогів та батьків щодо проявів PAC [4]. Останніми роками підходи до PAC змінилися в бік визначення цього захворювання як гетерогенної групи порушень розвитку нервової системи, які мають різноманітну етіологію, але характеризуються загальним комплексом симптомів, пов’язаних із порушеннями соціальної взаємодії, комунікації та поведінки (зокрема, стереотипність і обмеженість дій або інтересів) [1].

Взаємозв’язок PAC та епілепсії в дітей є предметом пильної уваги та дискусії відомих дослідників у галузі психоневрології дитячого віку. Останні дані підтверджують факт невизначеності стосовно того, що є основним захворюванням, а що коморбідним станом. Зокрема, питання щодо коморбідності епілепсії при PAC залишається відкритим серед спеціалістів із психоневрології дитячого віку [9,17,33]. В останній класифікації DSM-V терміни «первинні розлади розвитку» (PDD) і «розлади аутистичного спектра» (ASD) вживаються як синоніми та описують гетерогенну групу порушень розвитку нервової системи, які мають різноманітну етіологію, але характеризуються спільними симптомами, пов’язаними з порушеннями соціальної взаємодії, спілкування і поведінки (зокрема, стереотипність дій або інтересів) [1,3]. Спеціалісти здаються запитанням: «Розлади аутистичного спектра — це хвороба як нозологічна одиниця чи синдром або прояв іншої хвороби?» [15].

Проаналізувавши PAC у дітей з епілептичними нападами зазначив, що діагностичні епілептаолонії відрізняються два типи: I тип виникає в дітей з епілептичними синдромами, при яких розлади когнітивної сфери, інтелекту, мовлення і поведінки з аутистикоподібними проявами формується внаслідок частих епілептичних нападів; II тип характеризується психічними і соціальними порушеннями, у тому числі PAC, за відсутності епілептичних нападів. II тип епілептичних енцефалопатій визначається як когнітивна епілептиформна дезінтеграція — синдром набутих порушень вищих психічних функцій у дітей, асоційований з епілептиформною активністю на ЕГГ за відсутності в них епілептичних нападів або з поодинокими нападами в аналозі [24,25].

Слід зазначити, що можливим є III тип енцефалопатій PAC, зокрема, генетично детерміновані нерозпізнанні нападами або безсумісними формами. Зокрема, ми у своїй практиці неодноразово узагальнювали діагноз PAC з регресивним перебігом ГЕГГ, у яких батьки та медичний персонал або не відмічали напади, або не наводили іх уваги. Під час огляду встановлено, що в дитині маємо місце такі напади, як абсансь. Це спостереження наводить на думку, якщо умовно необхідності детального вивчення аномальність та оцінювання батьків дітей з PAC.

Патофізіологічні зміни, які зумовлюють поєднання PAC та епілепсії в дітей, недостатньо зрозуміли. На сьогодні обидва розлади вважаються наслідком порушеного функціонування нейрональних систем та іонних каналів [2,10].

Мета дослідження — визначити ліпідний спектр сироватки крові дітей з PAC; порівняти отримані показники залежно від клінічного підробот захворювання та даних електроенцефалографії (ЕЕГ).

Матеріали та методи дослідження

В основу роботи покладено результати обстеження, лікування та динамічного спостереження 121 дитини, батьки якої звернулися по медичну допомогу з приводу затримки або регресу психо-мовленнєвого розвитку, порушень комунікації, соціальної взаємодії та поведінки, епілептичними нападами або змінами на ЕГГ епілептиформного характеру протягом 2019–2021 рр. Обстеження всіх пацієнтів проведено за умови підписання батьками інформованої згоди з дотриманням принципів біоетики та деонтології та норм Європейської декларації (2004) «Етичні принципи медичних досліджень за участю людей у якості об’єкта дослідження», Конвенції Ради Європи про захист прав та гідності людини у зв’язку з застосуванням досягнень біології та медичного: конвенції про біомедицину. Обстеження та лікування дітей проведено на базі відділення психоневрології для дітей з перинатальною патологією та орфанными захворюваннями.
ДУ «Інститут педіатрії, акушерства і гінекології імені академіка О.М. Лук’янової НАМН України».

Критерії залучення до дослідження: згода батьків пацієнта на участь у дослідженні; вік дитини від 2 до 6 років включно; наявність у дитини затримки або регресу розвитку психо-мовленнєвих навичок, порушення комунікації, соціальних функцій та поведінки; наявність або відсутність епілептичних нападів або епілептичних змін на ЕEG.

Критерії виключення: відсутність згоди батьків пацієнта на участь у дослідженні; вік до 24 міс або понад 6 років; розумова відсталість без ознак РАС; синдром Аспергера; наявність сенсорних порушень (глухота, амавроз); наявність вродженої вади розвитку або прогресуючого захворювання нервової системи; що підтверджена методами нейровізуалізації або генетичного тестування; участь дитини в інших дослідженнях.

Сформовано три групи пацієнтів, які різнялись між собою залежно від клінічних проявів і змін на ЕЕГ.

Обстежених пацієнтів з епілептичною енцефалопатією та проявами РАС поділено на три групи:

а) 1-ша група — хворі діти з клінічними проявами РАС, але без епілептичних нападів та епілептичних змін на ЕЕГ (n=35);

б) 2-га група — хворі діти з когнітивною децентралізацією, тобто з клінічними проявами РАС, у яких не відмічено або відмічено одноразово в анамнезі епілептичні напади, але з епілептичними змінами на ЕЕГ (n=32);

в) 3-та група — хворі діти з клінічними проявами РАС, епілептичними нападами та епілептичними змінами на ЕЕГ (n=34).

Для оцінки рівня дисбалансу жирних кислот використано аналіз індексу ненасиченості (ИНН) жирних кислот. ІНН жирних кислот, або індекс подвійних зв’язків вважається інтегральним показником, який відображає насиченість клітинної мембрани омега-3 та омега-6 поліненасичених жирних кислот (ПНЖК). Він може відображати рідинність клітинної мембрани. Використання показника ІНН значно поширене в кардіології для досягнення кардіоміоцитів при хронічних захворюваннях серця. В неврології, зокрема при епілептичних енцефалопатіях та РАС, ІНН жирних кислот розраховано вперше.

Для оцінки тяжкості проявів РАС, когнітивної недостатності, регресу мовлення та по-відінкових навиків використано оцінювальну шкалу CARS для всіх дітей, яким встановлено діагноз РАС. Залежно від результатів тестування виділено групи з тяжким і легким перебігом епілептичної енцефалопатії та РАС. У 20 дітей діагностовано затримку психо-мовленнєвого розвитку з когнітивним зниженням, у яких були структурні зміни на магнітно-резонансній томографії або клінічні прояви яких не відповідали критеріям РАС.

Серед дітей з РАС було 60 (63.2±7.1%) хлопчиків і 41 (40.5±5.42%) дівчинка. Відомо, що РАС є більш поширеним серед хлопчиків, отже, отримані нами дані збігаються з даними закордонних досліджень [9].

Дослідження проведено згідно з принципами біоетики та погоджене в локальному етичному комітеті. В обстежених дітей відібрано до 4 мл цільової крові, яку переносили в пробірку та центрифугували протягом 7–10 хв при 3000 об/хв. Віділену від формених елементів сироватку відібрано в стерильну пробірку та заморожено за температури -18–20°C. Далі визначено концентрації жирних кислот крові методом газорідинної хроматографії за методом Блаза–Дайера. Для статистичної обробки отриманих даний використано програму «Excel».

Результати дослідження та їх обговорення

Під час аналізу розподілу за віковим складом усі групи були майже одного віку, середній вік становив 4,02±0,95 року. Серед дітей переважали хлопчики, середнє співвідношення дівчак до хлопчиків становило 1:3 (p<0,05).

Віковий діапазон обстежених дітей обумовлений тим, що батьки звертаються з приводу когнітивних і поведінкових порушень здебільшого після досягнення дитиною 3-річного віку, хоча початок патології припадає на період раннього віку.

Клітинна мембрана нейрона з усіма його іонними каналами забезпечує функціонування нервової системи з формуванням моторних, когнітивних і поведінкових реакцій. Білійний фосфоліпідний шар складається з жирних кислот. Найменше порушення співвідношення яких може призвести до порушення функціональної активності як самої клітини, так і іонних каналів, що занурені у фосфоліпідний матрикс. Під час аналізу ліпідного спектра крові обстежених дітей виявлено близько 40 жирних кислот, які належать до таких основних класів: насичені, меноненасичені та полі-
ненасичені жирні кислоти. ПНЖК розподілені на омега-3 та омега-6 класи відповідно до лінійної формулі. Показники насищеніх жирних кислот, відсоткова концентрація яких в аналізі становила менше 0,5%, не враховувалися при обрахунках, і їх загальний вміст не перевищував 10% від загальної суми жирних кислот. 

Під час аналізу показників концентрації жирних кислот виявлено, що в сироватці крові відмічався достовірно низький рівень омега-3 ПНЖК і насищення омега-6 ПНЖК в усіх групах дітей. 

Дані розподілу окремих класів жирних кислот наведено на рис. 1.

На рис. 1 відображено показники концентрації основних класів жирних кислот. Найбільш частина припадає на насищені жирні кислоти, серед яких основним представником є пальмітинова кислота, та мононенасичені (переважно олеїнова) жирні кислоти. Отримані показники є типовими, оскільки ці жирні кислоти є основним енергетичним субстратом в організмі. Співвідношення концентрації ПНЖК викликає більшу увагу, оскільки багато міжнародних досліджень стверджують про дисбаланс у цьому сегменті ліпідного профілю в дітей з РАС [27–29]. Проте аналіз рівня ПНЖК у дітей з РАС, епілетифічними змінами та когнітивною дезінтеграцією раніше не проводився. Для оцінки балансу омега-3 / омега-6 ПНЖК враховано рівні ессенціальних жирних кислот – лінолевої та ліноленової та їх основних метаболітів. Результати порівняння наведено на рис. 2 та 3.

При оцінці показників концентрації основних метаболітів ессенціальних жирних кислот виявлено дисбаланс за рахунок дефіциту ессенціальної ліноленової кислоти та її метаболіту – докозагексаенової кислоти, особливо в дітей з РАС та епілетифічними змінами на ЕЕГ (2-та група), (р<0,01). Також слід звернути увагу на різке зростання в дітей 3-ї групи рівня докозагексаенової кислоти, що може бути наслідком руйнування клітинної мембрани у зв'язку з руйнівною генералізованою епілетифічною активністю та епілетичними нападами. Серед омега-6 жирних кислот виявлено високий вміст ессенціальної лінолевої кислоти та її метаболіту – арахідонової кислоти, що і зумовлює сумарний надлишок цієї групи ПНЖК, більш виражений у 1 і 2-й групах.

Для оцінки дисбалансу основних ПНЖК також використовують сумарне співвідношен-
поля відсотків ненасичених жирних кислот у групах дітей з епілептичними енцефалопатіями та розладами аутистичного спектра.

За результатами оцінки ІНН жирних кислот отримані результати відображають нижчий рівень ІНН у дітей 3-ї групи, у яких є прояві РАС та епілептичні напади, порівняно з іншими групами (р<0,05, г=0,99). Результати наведено на рис. 5.

Отримані результати ІНН відображають зменшену рідкість біологічної мембрани в дітях з РАС та епілептичними нападами, що може бути в основі патологічного функціонування іонних каналів, функція яких порушується при «затвердні» клітинної мембрани. Досить часто трапляються ситуації, коли розвиток дитини з перших місяців життя має аутистичний (первазивний) характер, а епілептична
ні напади з’являються згодом. Однак частіше спостерігається формування когнітивних і по- ведінкових змін, що виникають після дебюту епілептичних нападів. Особливо це характер- но для епілептичних енцефалопатій, при яких тяжкі судомі напади в поєднанні з руйнівною епілептиформною активністю на ЕЕГ призводять до когнітивних і поведінкових порушень. До них, зокрема, належать епілептичні синдро- ми неонатального та дитячого віку (Отахара, Веста, Ленокса–Гасто, Драве та ін.) [26,30].

Останнім часом у дослідженах звертають увагу на поєднання в дітей РАС із маніфестаційними клінічними або субклінічними електро- енцефалографічними епілептичними змінами біоелектричної активності головного мозку. Взаємозв’язок РАС з епілептиформною деінте- грацією в дітей знаходиться в процесі вивчення та привертає увагу дослідників у галузі психо- неврохірургії дитячого віку. Тому виділено термін «когнітивна епілептиформна деінтеґрація» — симптомокомплекс наданих порушень вищої нервої діяльності в дітей, що асоціюється з вираженою епілептиформною активністю на ЕЕГ за відсутності в них епілептичних нападів (при цьому допускається можливість одниничних епілептичних нападів в анамезі).

За даними К.Ю. Мухіна (2012), можна виділити три основні причини розвитку когнітив- ної епілептиформної деінтеґрації в дітей:

• генетично детерміновані порушення процесів дозрівання головного мозку;
• порушення нейрональних зв’язків, обумовле- нове постійною тривалою епілептиформною активністю на ЕЕГ;
• морфологічні зміни в мозку, обумовлені па- тологією пренатального розвитку.

Два перші механізми, що діють поєднано, є обов’язковими, а третього може і не бути [23,24].

Зв’язок епілептиформних змін на ЕЕГ і РАС розкривається в багатьох дослідженнях, але чіт- кої картини ніхто здається не може. Напри- клад, одні дослідники описують високу частоту епілептиформних змін на ЕЕГ у хворих з РАС, інші пов’язують їх з інтелектуальною недостатністю або низьким показником IQ, ще інші стверджують, що тільки напади пов’язані з розладами когнітивної функції при РАС [26,30]. Часто поведінкові розлади (інверсія, інтенсивність і дративливість) пов’язані із судомінними нападами, але не з епілептиформними змінами на ЕЕГ при РАС, на протиставлення, інше дослідження пов’язує агресивність і стереотипні рухи з високою частотою епілептиформних змін на ЕЕГ без клінічних судом [23–25].

У своєму дослідженні А. (Tako) Kumaraku et al. (2015) під час обстеження 72 хлопчиків і 20 дівчаток із попереднім діагнозом РАС ви- явили когнітивний регрес, що асоціювався з епілептиформними змінами на ЕЕГ в 15% з 76 дітей без клінічних проявів епілепсії. Середній вік розвитку когнітивного регре- су був 23 місяці. Половина епілептиформних розрядів були центро-темпоральними. У дітей з епілептиформним регресом був нижчий рівень когнітивних показників порівняно з дітьми без епілептиформних змін на ЕЕГ [18].

Під час аналізу даних інтеркільської ЕЕГ в період бадьорості та сну дітей з РАС і судома- ми в анамезі або без них Valgo G. et al. (2013) виявили епілептиформні зміни на ЕЕГ у 154 із 220 дітей. Регресивні РАС мали зв’язок із па- тологічною епілептиформною активністю в го- ловному мозку. Ви явили достовірну асоціацію між регресивними РАС та скроневою локаліза- цією епілептиформної активності, а також між нерегресивними РАС (Р-ПАС) і локаліза- цією епілептиформної активності в каудальних відділах головного мозку. Крім того, в остан- ніх дослідженнях встановили фенотип Р-ПАС, зокрема, це поєднання скроневої локалізації епілептиформної активності на ЕЕГ та макро- цефалії. Також під час проведення магнітно-резонансної томографії у таких дітей вияви- ли зменшення товщі кори правої скроневої долі [14,17].

Аналіз проведених досліджень підтверджує достовірність взаємозв’язку між епілептиформ- ною активністю на ЕЕГ клінічними судомними нападами або без них і РАС у дітей. Проте етіо- логічні фактори та патогенетичні механізми на- сьогодні піддаються дискусії в наукових колах.

На нашу думку, слід звернути увагу на роль порушення обміну ПНЖК як одного з етіопа- тогенетичних факторів РАС. Порівняно з ін- шими органами, окрім жирової тканини, у моз- ку людини найвищий відсоток вмісту ліпідів, близько 60% відносно маси сухої речовини, серед яких 20% становлять ПНЖК. До структурних одиниць фосфоліпідної мембрани належать арахідонова кислота (20:4 о-6), докоза- гексасенова (22:6 о-3) та ейкосапентаенова (20:5 о-3), які є похідними від двох великих типів ПНЖК — омега-6 лінолеової (18:2 о-6) та омега-3 о-ліноленової (18:3 о-3) кислот.
Омега-3 та омега-6 ПНЖК становлять найбільший відсоток серед ПНЖК у структурі ліпідів головного мозку, і саме достатне надходження та баланс між ними важливий для цілісності мембран та правильного функціонування нервої системи. ПНЖК мають надходити до організму з продуктами харчування, оскільки їх синтез in vivo відсутній [12,19].

Крім того, що ПНЖК входять до структурних одиниць клітинної мембрани нервової тканини, вони є модуляторами іонних каналів, ферментами та коферментами, а також впливають на функціонування рецепторів [6,13].

Порушення метаболізму арахідonoвої, ейозапентаєної та докозагексаенової кислоти можуть виникати залежно від генетичних та екологічних факторів. Нормальне функціонування головного мозку забезпечується через достатне надходження ПНЖК. Крім того, важливим є співвідношення омега-6 / омега-3 ПНЖК, порушення якого виявлене при РАС. У разі зростання співвідношення омега-6 / омега-3, яке є свідченням ненормального метаболізму ліпідної кислоти, може відбуватися зміна фосфоліпідного складу клітинної стінки. Зокрема, арахідонова кислота заміщує докозагексанова кислоту внаслідок дефіциту останньої, у результаті чого знижується рідинність клітинної мембрани. При змінах структури клітинної мембрани порушується її функція та функціонування іонних каналів. У дослідженні, проведенному X. Yang та співавт. (2011), показано порушення рідинності клітинної мембрани в патогенезі хвороби Альцгеймера [32].

У хворих дітей з РАС та експериментах на тваринах виявлені порушення обміну продуктів метаболізму ПНЖК, зокрема простирандинів (ПГ), ПГ Е2 — важливий медіаторний ліпід, який має місце від інтенсивної регуляції різноманітних функцій клітинної стінки. Зокрема, він регулює взаємодію з багатьма медіаторними системами головного мозку [20].


Недостатнє надходження ліпідів із продуктами харчування може призвести до порушень ліпідного профілю, порушення проведення сигналів і порушення дозрівання головного мозку. Велика кількість досліджень підтверджує порушення метаболізму ліпідів як одного з основних біологічних компонентів у патофізіології РАС [35].

Висновки
Аналізуючи наукові дані, можна зробити висновок про наявність епіліптиформних змін на ЕЕГ та можливість судомних нападів у дітей з RAS. Остання редакція класифікації психічних порушень визнає RAS як основне захворювання, але як симптомомокомплекс порушень при інших захворюваннях організму. Отримані нами дані є достовірним підтвердженням того, що в дітей з RAS, епіліптиформними судомами та епіліптиформними змінами на ЕЕГ спостерігаються вище показники омега-6 та арахіднової кислоти та дефіцит омега-3 та докозагексанової кислоти. Найбільш виражений дисбаланс відмічається як у співвідношеннях омега-6 / омега-3, так і арахіднової / докозагексанової кислоти у групі дітей з РАС та епіліптиформними змінами на ЕЕГ.

Отримані результати ПНН відображають змінюючу рідинність біологічної мембрани в дітях з РАС та епіліптиформними нападами, що може бути в основі патологічного функціонування іонних каналів, функція яких порушується при «затвердінні клітинної мембрани».

Такі результати можуть бути підтвердженим теорії щодо зміни властивостей фосфоліпідної мембрани та іонних каналів нерво-
References/Literatura


27. Partela N et al. (2016). Omega-3 and Omega-6 Polyunsaturated Fatty Acid Level and Correlation with Symptoms in Children with Attention Deficit Hyperactivity Disorder, Autism Spectrum Disorder and Typically Developing Controls. PLOS ONE. 11: 5.


