• Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa (часть 3)
ru К содержанию Полный текст статьи

Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa (часть 3)

SOVREMENNAYA PEDIATRIYA.2017.1(81):52-63; doi 10.15574/SP.2017.81.52

Абатуров А. Е., Никулина А. А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

В статье на основании литературных источников продемонстрирована роль клеточных реакций в развитии иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Описаны механизмы рекрутирования и активации провоспалительных иммуноцитов, процессы бактериального киллинга, которые обеспечивают эффективный саногенез синегнойной инфекции и предотвращают формирование хронического воспалительного процесса.

Ключевые слова: пневмония, Pseudomonas aeruginosa, бактериальный киллинг, иммуноциты.

Литература

1. Абатуров А. Е. Значение металлосвязывающих белков в неспецифической защите респираторного тракта. 1. Лактоферрин / А. Е. Абатуров // Здоровье ребенка. — 2009. — № 4 (19). — С. 125—128.

2. Абатуров А. Е. Роль прооксидантной и антиоксидантной систем при воспалительных заболеваниях органов дыхания / А. Е. Абатуров, А. П. Волосовец, Е. И. Юлиш. — Харьков : Планета-Принт, 2013. — 496 с.

3. Дефензины и дефензив-зависимые заболевания / А. Е. Абатуров, О. Н. Герасименко, И. Л. Высочина, Н. Ю. Завгородняя. — Одесса : Издательство ВМВ, 2011. — 265 с.

4. Acidification-dependent activation of CD1d-restricted natural killer T cells is intact in cystic fibrosis / S. E. Rzemieniak, A. F. Hirschfeld, R. E. Victor [et al.] // Immunology. — 2010. — Vol. 130 (2). — P. 288—95. https://doi.org/10.1111/j.1365-2567.2009.03234.x.

5. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice / D. S. Damlund, L. Christophersen, P. О. Jensen [et al.] // APMIS. — 2016. — Vol. 124 (6). — P. 500—7. https://doi.org/10.1111/apm.12530.

6. Aggarwal N. R. Diverse macrophage populations mediate acute lung inflammation and resolution / N. R. Aggarwal, L. S. King, F. R. D'Alessio // Am. J. Physiol. Lung Cell Mol Physiol. — 2014. — Apr. 15. — Vol. 306 (8). — P. 709—25. https://doi.org/10.1152/ajplung.00341.2013.

7. Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection / S. Kannan, H. Huang, D. Seeger [et al.] // PLoS One. — 2009. — Vol. 4 (3). — P. 4891. https://doi.org/10.1371/journal.pone.0004891.

8. Ammons M. C. Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic / M. C. Ammons, V. Copiѐ // Biofouling. — 2013. — Vol. 29 (4). — P. 443—55. https://doi.org/10.1080/08927014.2013.773317.

9. Andrews T. Infections in patients with inherited defects in phagocytic function / T. Andrews, K. E. Sullivan // Clin. Microbiol. Rev. — 2003. — Vol. 16 (4). — P. 597—621. https://doi.org/10.1128/CMR.16.4.597-621.2003.

10. Antimicrobial activity of immobilized lactoferrin and lactoferricin / R. Chen, N. Cole, D. Dutta [et al.] // J. Biomed. Mater. Res. B Appl Biomater. — 2016. — Oct 19. https://doi.org/10.1002/jbm.b.33804.

11. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms / S. Sanchez-Gomez, R. Ferrer-Espada, P. S. Stewart [et al.] // BMC Microbiol. — 2015. — Jul. 7. — Vol. 15. — P. 137. https://doi.org/10.1186/s12866-015-0473-x.

12. Antimicrobial Properties of an Immunomodulator — 15 kDa Human Granulysin / H. M. Wei, L. C. Lin, C. F. Wang [et al.] // PLoS One. — 2016. — Jun 8. — Vol. 11 (6):e0156321. https://doi.org/10.1371/journal.pone.0156321.

13. Bayes H. K. IL-17 is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa / H. K. Bayes, N. D. Ritchie, T. J. Evans // Infect Immun. — 2016. — Oct. 3. pii: IAI.00717—16.

14. Bedard K. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology / K. Bedard, K. H. Krause // Physiol. Rev. — 2007. — Vol. 87 (1). — P. 245—313. https://doi.org/10.1152/physrev.00044.2005.

15. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update / C. Bogdan // Trends Immunol. — 2015. — Vol. 36 (3). — P. 161—78. https://doi.org/10.1016/j.it.2015.01.003.

16. Bystrom J. Harnessing the Therapeutic Potential of Th17 Cells / J. Bystrom, T. E. Taher, M. S. Muhyaddin // Mediators Inflamm. — 2015. — 2015: 205156. https://doi.org/10.1155/2015/205156.

17. Cd1d-dependent regulation of bacterial colonization in the intestine of mice / E. E. Nieuwenhuis, T. Matsumoto, D. Lindenbergh [et al.] // J. Clin. Invest. — 2009. — Vol. 119 (5). — P. 1241—50. https://doi.org/10.1172/JCI36509.

18. Cheung D. O. Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa / D. O. Cheung, K. Halsey, D. P. Speert // Infect. Immun. — 2000. — Vol. 68 (8). — P. 4585—92. https://doi.org/10.1128/IAI.68.8.4585-4592.2000; PMid:10899859 PMCid:PMC98382.

19. Chung J. W. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis / J. W. Chung, Z. H. Piao, S. R. Yoon // PLoS Pathog. — 2009. — Vol. 5 (8). — e1000561. https://doi.org/10.1371/journal.ppat.1000561.

20. Cohen N. R. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity / N. R. Cohen, S. Garg, M. B. Brenner // Adv. Immunol. — 2009. — Vol. 102. — P. 1—94. https://doi.org/10.1016/S0065-2776(09)01201-2.

21. Cortjens B. Neutrophil Extracellular Traps in Respiratory Disease: guided anti-microbial traps or toxic webs? / B. Cortjens, J. B. van Woensel, R. A. Bem // Paediatr Respir Rev. — 2016. — Jun 29. pii: S1526-0542(16)30060-4. https://doi.org/10.1016/j.prrv.2016.03.007.

22. Cowland J. B. Granulopoiesis and granules of human neutrophils / J. B. Cowland, N. Borregaard // Immunol Rev. — 2016. — Vol. 273 (1). — P. 11—28. https://doi.org/10.1111/imr.12440.

23. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia / W. C. Tsai, R. M. Strieter, B. Mehrad [et al.] // Infect. Immun. — 2000. — Vol. 68 (7). — P. 4289—96. https://doi.org/10.1128/IAI.68.7.4289-4296.2000; PMid:10858247 PMCid:PMC101748.

24. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense / M. Carevic, H. Oz, K. Fuchs [et al.] // J. Innate Immun. — 2016. — Vol. 8 (4). — P. 362—73. https://doi.org/10.1159/000444125.

25. DeCoursey T. E. Voltage_gated proton channels find their dream job managing the respiratory burst in phagocytes / T. E. DeCoursey // Physiology (Bethesda). — 2010. — Vol. 25 (1). — P. 27—40. https://doi.org/10.1152/physiol.00039.2009.

26. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction / F. Pene, B. Zuber, E. Courtine [et al.] // J. Immunol. — 2008. — Dec. 15. — Vol. 181 (12). — P. 8513—20. https://doi.org/10.4049/jimmunol.181.12.8513.

27. Depletion of natural CD4+CD25+ T regulatory cells with anti-CD25 anti-body does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice / S. O. Carrigan, Y. J. Yang, T. Issekutz [et al.] // Immunobiology. — 2009. — Vol. 214 (3). — P. 211—22. https://doi.org/10.1016/j.imbio.2008.07.027.

28. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model / A. Broquet, A. Roquilly, C. Jacqueline [et al.] // Crit Care Med. — 2014. — Vol. 42 (6). — P. 441—50. https://doi.org/10.1097/CCM.0000000000000311.

29. Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice / S. Satoh, K. Oishi, A. Iwagaki [et al.] // Clin. Exp. Immunol. — 2001. —Vol. 126 (2). — P. 266—73. https://doi.org/10.1046/j.1365-2249.2001.01656.x.

30. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity / Q. Shan, M. Dwyer, S. Rahman, M. Gadjeva // Infect Immun. — 2014. — Vol. 82 (10). — P. 4135—43. https://doi.org/10.1128/IAI.02169-14.

31. DNA is an antimicrobial component of neutrophil extracellular traps / T. W. Halverson, M. Wilton, K. K. Poon [et al.] // PLoS Pathog. — 2015. — Jan 15. — Vol. 11 (1):e1004593. https://doi.org/10.1371/journal.ppat.1004593.

32. Effects of inhaled nitric oxide in a rat model of Pseudomonas aeruginosa pneumonia / K. E. Webert, J. Vanderzwan, M. Duggan [et al.] // Crit Care Med. — 2000. — Vol. 28 (7). — P. 2397—405. https://doi.org/10.1097/00003246-200007000-00035; PMid:10921570

33. Elevated BALF concentrations of alpha- and beta-defensins in patients with pulmonary alveolar proteinosis / H. Mukae, H. Ishimoto, S. Yanagi [et al.] // Respir Med. — 2007. — Vol. 101 (4). — P. 715—21. https://doi.org/10.1016/j.rmed.2006.08.018..

34. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia / A. M. Manicone, T. P. Birkland, M. Lin [et al.] // J. Immunol. — 2009. — Mar 15. — Vol. 182 (6). — P. 3866—76. doi: 10.4049/jimmunol. 0713949.

35. Fang F. C. Antimicrobial actions of reactive oxygen species / F. C. Fang // MBio. — 2011. — Sep. 6. — Vol. 2 (5). pii: e00141—11. https://doi.org/10.1128/mBio.00141-11.

36. Fang F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies / F. C. Fang // Nat Rev. Microbiol. — 2004. — Vol. 2 (10). — P. 820—32. https://doi.org/10.1038/nrmicro1004.

37. Flannagan R. S. The cell biology of phagocytosis / R. S. Flannagan, V. Jaumouill?, S. Grinstein // Annu Rev. Pathol. — 2012. — Vol. 7. — P. 61—98. https://doi.org/10.1146/annurev-pathol-011811-132445.

38. Ginhoux F. Fate PPAR-titioning: PPAR-γ «instructs» alveolar macrophage development / F. Ginhoux // Nat Immunol. — 2014. — Vol. 15 (11). — P. 1005—7. https://doi.org/10.1038/ni.3011.

39. Hussell T. Alveolar macrophages: plasticity in a tissue-specific context / T. Hussell, T. J. Bell // Nat Rev. Immunol. — 2014. — Vol. 14 (2). — P. 81—93. https://doi.org/10.1038/nri3600.

40. Identification of a Human Natural Killer Cell Lineage-Restricted Progenitor in Fetal and Adult Tissues / V. M. Renoux, A. Zriwil, C. Peitzsch [et al.] // Immunity. — 2015. — Aug. 18. — Vol. 43 (2). — P. 394—407. https://doi.org/10.1016/j.immuni.2015.07.011.

41. IL-17 is a critical component of vaccine-induced protection against lung infection by lipopolysaccharide-heterologous strains of Pseudomonas aeruginosa / G. P. Priebe, R. L. Walsh, T. A. Cederroth [et al.] // J. Immunol. 2008. — Oct. 1. — Vol. 181 (7). — P. 4965—75. https://doi.org/10.4049/jimmunol.181.7.4965; PMid:18802100 PMCid:PMC2597098.

42. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance/ C. A. McCaslin, D. N. Petrusca, C. Poirier [et al.] // J. Cyst Fibros. — 2015. — Vol. 14 (1). — P. 70—7. https://doi.org/10.1016/j.jcf.2014.06.009.

43. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response / C. Moser, P. O. Jensen, O. Kobayashi [et al.] // Clin. Exp. Immunol. 2002. — Vol. 127 (2). — P. 206—13. https://doi.org/10.1046/j.1365-2249.2002.01731.x.

44. Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia / A. Y. Koh, G. P. Priebe, C. Ray [et al.] // Infect. Immun. — 2009. — Vol. 77 (12). — P. 5300-10. https://doi.org/10.1128/IAI.00501-09.

45. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense / D. P. Speert, M. Bond, R. C. Woodman, J. T. Curnutte // J. Infect. Dis. — 1994. — Vol. 170 (6). — Vol. 1524—31. https://doi.org/10.1093/infdis/170.6.1524.

46. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia / C. C. Miller, C. A., Hergott M. Rohan [et al.] // J. Cyst Fibros. — 2013. — Vol. 12 (6). — P. 817—20. https://doi.org/10.1016/j.jcf.2013.01.008.

47. Innate Immune Signaling Activated by MDR Bacteria in the Airway / D. Parker, D. Ahn, T. Cohen, A. Prince // Physiol Rev. — 2016. — Vol. 96 (1). —P. 19—53. https://doi.org/10.1152/physrev.00009.2015.

48. Innate or adaptive immunity? The example of natural killer cells / E. Vivier, D. H. Raulet, A. Moretta [et al.] // Science. — 2011. — Jan 7. — Vol. 331 (6013). — P. 44—9. https://doi.org/10.1126/science.1198687.

49. Kettritz R. Neutral serine proteases of neutrophils / R. Kettritz // Immunol. Rev. — 2016. — Vol. 273 (1). — P. 232—48. https://doi.org/10.1111/imr.12441.

50. Kim Y. J. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy / Y. J. Kim, Y. H. Jun, Y. R. Kim // BMC Infect Dis. — 2014. — Mar. 24. — Vol. 14. — P. 161. https://doi.org/10.1186/1471-2334-14-161

51. Lavoie E. G. Innate immune responses to Pseudomonas aeruginosa infection / E. G. Lavoie, T. Wangdi, B. I. Kazmierczak // Microbes Infect. — 2011. —Vol. 13 (14—15). — P. 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

52. Lee W. L. Leukocyte elastase: physiological functions and role in acute lung injury / W. L. Lee, G. P. Downey // Am. J. Respir. Crit Care Med. — 2001. — Sep. 1. — Vol. 164 (5). — P. 896—904. https://doi.org/10.1164/ajrccm.164.5.2103040.

53. Lessons learned from phagocytic function studies in a large cohort of patients with recurrent infections / B. Wolach, R. Gavrieli, D. Roos, S. Berger-Achituv // J. Clin. Immunol. — 2012. — Vol. 32 (3). — P. 454—66. https://doi.org/10.1007/s10875-011-9633-4.

54. Lovewell R. R. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa / R. R. Lovewell, Y. R. Patankar, B. Berwin // Am. J. Physiol. Lung Cell Mol Physiol. — 2014. — Apr. 1. — Vol. 306 (7). — P. 591—603. https://doi.org/10.1152/ajplung.00335.2013.

55. Lu Y. Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents / Y. Lu, D. L. Slomberg, M. H. Schoenfisch // Biomaterials. — 2014. — Vol. 35 (5). — P. 1716—24. doi: 10.1016/j. biomaterials.2013.11.015.

56. Macrophage adaptation in airway inflammatory resolution / M. Kaur, T. Bell, S. Salek-Ardakani, T. Hussell // Eur. Respir. Rev. — 2015. — Vol. 24 (137). — P. 510—5. https://doi.org/10.1183/16000617.0030-2015.

57. Marrero I. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer / I. Marrero, R. Ware, V. Kumar // Front Immunol. — 2015. — Jun 17. — Vol. 6. — P. 316. https://doi.org/10.3389/fimmu.2015.00316.

58. Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection / A. Kamei, Y. S. Coutinho-Sledge, J. B. Goldberg [et al.] // Infect. Immun. — 2011. — Vol. 79 (3). — P. 1289—99. https://doi.org/10.1128/IAI.01139-10.

59. Myeloperoxidase: a front-line defender against phagocytosed microorganisms / S. J. Klebanoff, A. J. Kettle, H. Rosen [et al.] // J. Leukoc Biol. — 2013. — Vol. 93 (2). — P. 185—98. https://doi.org/10.1189/jlb.0712349.

60. Nauseef W. M. Neutrophils at work / W. M. Nauseef, N. Borregaard // Nat Immunol. — 2014. — Vol. 15 (7). — P. 602—11. https://doi.org/10.1038/ni.2921.

61. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa / T. O. Hirche, R. Benabid, G. Deslee [et al.] // J. Immunol. — 2008. — Oct. 1. — Vol. 181 (7). — P. 4945—54. https://doi.org/10.4049/jimmunol.181.7.4945.

62. Neutrophils: Between host defence, immune modulation, and tissue injury / P. Kruger, M. Saffarzadeh, A. N. Weber [et al.] // PLoS Pathog. — 2015. — Mar 12. — Vol. 11 (3). — P. 1004651. https://doi.org/10.1371/journal.ppat.1004651.

63. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation / H. Yang, M. H. Biermann, J. M. Brauner [et al.] // Front Immunol. — 2016. — Aug. 12. — Vol. 7. — P. 302. https://doi.org/10.3389/fimmu.2016.00302.

64. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection / S. C. Wesselkamper, B. L. Eppert, G. T. Motz [et al.] // J. Immunol. — 2008. — Oct. 15. — Vol. 181 (8). —P. 5481—9. https://doi.org/10.4049/jimmunol.181.8.5481; PMid:18832705 PMCid:PMC2567053.

65. NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa / T. Kinjo, M. Nakamatsu, C. Nakasone [et al.] // Microbes Infect. 2006. — Vol. 8 (12—13). — P. 2679—85. https://doi.org/10.1016/j.micinf.2006.07.016.

66. Nordenfelt P. Phagosome dynamics during phagocytosis by neutrophils / P. Nordenfelt, H. Tapper // J. Leukoc Biol. — 2011. — Vol. 90 (2). — P. 271—84. https://doi.org/10.1189/jlb.0810457.

67. Odobasic D. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase / D. Odobasic, A. R. Kitching, S. R. Holdsworth // J. Immunol. Res. — 2016. — Vol. 2016. — P. 2349817. https://doi.org/10.1155/2016/2349817.

68. Pallmer K. Recognition and Regulation of T Cells by NK Cells / K. Pallmer, A. Oxenius // Front Immunol. — 2016. — Jun 24. — Vol. 7. — P. 251. doi: 10.3389/fimmu. 2016.00251.

69. Paradoxical role of alveolar macrophage-derived granulocyte-macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation / M. N. Ballinger, L. L. Hubbard, T. R. McMillan [et al.] // Am. J. Physiol. Lung Cell Mol Physiol. — 2008. — Vol. 295 (1). — P. 114—22. https://doi.org/10.1152/ajplung.00309.2007.

70. Phospholipase Cγ in Toll-like receptor-mediated inflammation and innate immunity / Y. S. Bae, H. Y. Lee, Y. S. Jung [et al.] // Adv. Biol. Regul. —2016. — Sep. 27. pii: S2212—4926(16)30032-X. https://doi.org/10.1016/j.jbior.2016.09.006.

71. Porto B. N. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing? / B. N. Porto, R. T. Stein // Front Immunol. — 2016. — Aug. 15. — Vol. 7. — P. 311. https://doi.org/10.3389/fimmu.2016.00311.

72. PTEN limits alveolar macrophage function against Pseudomonas aeruginosa after bone marrow transplantation / L. L. Hubbard, C. A. Wilke, E. S. White, B. B. Moore // Am. J. Respir. Cell Mol Biol. — 2011. — Vol. 45 (5). — P. 1050—8. https://doi.org/10.1165/rcmb.2011-0079OC.

73. Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages / N. Cifani, B. Pompili, M. Anile [et al.] // PLoS One. — 2013. — Aug. 19. — Vol. 8 (8). — e71717. https://doi.org/10.1371/journal.pone.0071717.

74. Regulation of neutrophilic inflammation in lung injury induced by community–acquired pneumonia / R. Jose, A. Williams, M. Sulikowski [et al.] // Lancet. — 2015. — Feb. 26. — Vol. 385, Suppl. 1. — P. 52. https://doi.org/10.1016/S0140-6736(15)60367-1.

75. Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors / P. Subramanian, I. Mitroulis, G. Hajishengallis, T. Chavakis // Curr Opin Hematol. — 2016. — Vol. 23 (1). — P. 36—43. https://doi.org/10.1097/MOH.0000000000000198.

76. Reighard K. P. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions / K. P. Reighard, M. H. Schoenfisch // Antimicrob Agents Chemother. — 2015. — Vol. 59 (10). — P. 6506—13. https://doi.org/10.1128/AAC.01208-15.

77. Role of Myeloperoxidase in Patients with Chronic Kidney Disease / B. Kisic, D. Miric, I. Dragojevic [et al.] // Oxid Med. Cell Longev. — 2016. — Vol. 2016:1069743. https://doi.org/10.1155/2016/1069743.

78. Schoeniger A. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition / A. Schoeniger, H. Fuhrmann, J. Schumann // Peer J. — 2016. — Feb. 4. — Vol. 4. — P. 1663. https://doi.org/10.7717/peerj.1663.

79. Seillet C. Development, Homeostasis, and Heterogeneity of NK Cells and ILC1 / C. Seillet, G. Belz, N. D. Huntington // Curr Top Microbiol Immunol. — 2016. — Vol. 395. — P. 37—61. doi: 10.1007/82-2015-474.

80. Serine protease inhibitor 6-deficient mice have increased neutrophil immunity to Pseudomonas aeruginosa / M. Zhang, N. Liu, S. M. Park [et al.] // J. Immunol. — 2007. — Oct. 1. — Vol. 179 (7). — P. 4390—6. https://doi.org/10.4049/jimmunol.179.7.4390.

81. Substance P regulates natural killer cell interferon-gamma production and resistance to Pseudomonas aeruginosa infection / S. Lighvani, X. Huang, P. P. Trivedi [et al.] // Eur. J. Immunol. — 2005. — Vol. 35 (5). — P. 1567—75. https://doi.org/10.1002/eji.200425902.

82. The heterogeneity of lung macrophages in the susceptibility to disease / L. Morales-Nebreda, A. V. Misharin, H. Perlman, G. R. Budinger // Eur. Respir. Rev. — 2015. — Vol. 24 (137). — P. 505—9. https://doi.org/10.1183/16000617.0031-2015.

83. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background / P. Benoit, V. Y. Sigounas, J. L. Thompson [et al.] // Infect. Immun. — 2015. —Vol. 83 (6). — P. 2557—65. https://doi.org/10.1128/IAI.00015-15.

84. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines / P. Mazzi, E. Caveggion, J. A. Lapinet-Vera [et al.] // J. Immunol. — 2015. — Sep. 1. — Vol. 195 (5). — P. 2383—95. https://doi.org/10.4049/jimmunol.1402011.

85. Wood S. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin / S. Wood, J. Goldufsky, S. H. Shafikhani // PLoS Pathog. — 2015. — May 28. — Vol. 11 (5):e1004934. https://doi.org/10.1371/journal.ppat.1004934.

86. Yehia H. M. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa / H. M. Yehia, W. A. Hassanein, S. M. Ibraheim // Biomed Res Int. — 2015. — Vol. 2015:651464. https://doi.org/10.1155/2015/651464.

Содержание журнала Текст статьи