• К вопросу диагностики нейропсихического развития новорожденных и детей раннего возраста
ru К содержанию Полный текст статьи

К вопросу диагностики нейропсихического развития новорожденных и детей раннего возраста

Modern Pediatrics. Ukraine. (2022). 8(128): 45-67. doi 10.15574/SP.2022.128.45
 Швейкина В. Б.1,3, Мартынюк В. Ю.2
1ГУ «Институт педиатрии, акушерства и гинекологии имени академика Е.М. Лукьяновой НАМН Украины», г. Киев
2ГУ «Украинский медицинский центр реабилитации детей с органическим поражением нервной системы МЗ Украины», г. Киев
3Национальная детская специализированная больница «ОХМАТДЕТ», г. Киев, Украина

Для цитирования: Shveikinа VB, Martyniuk VYu. (2022). To the issue of diagnosis of neuropsychological development of newborns and young children. Modern Pediatrics. Ukraine. 8(128): 4567. doi 10.15574/SP.2022.128.45.
Статья поступила в редакцию 07.10.2022 г., принята в печать 20.12.2022 г.

Освещена актуальная проблема неонатологии и детской неврологии — особенности ранней диагностики нейропсихического развития новорожденных и детей раннего возраста.
Проанализирована научная литература о морфофункциональных особенностях развития головного мозга, при этом основное внимание обращено на первые два года жизни ребенка. Подчеркнуто, что пик активности развития мозга приходится на вторую половину беременности и первые три месяца постнатальной жизни.
Описаны новые данные развития головного мозга, а именно, наличие переходной структуры — кортикальной субпластины. Показано, что развитие двигательной и поведенческой сферы новорожденного и ребенка грудного возраста в большей степени опосредованы сосуществованием двух отдельных, но взаимосвязанных мозговых структур — переходной структуры, а именно субпластины, и формирования в этот период кортикальной пластины.
Указано, что для диагностики нарушений нейроразвития важны два возрастных периода: первый — около трех месяцев после рождения, когда элиминирует кортикальная субпластина в первичной двигательной, соматосенсорной и зрительной коре; второй — конец первого года, когда элиминирует кортикальная субпластина в префронтальной и теменно-височной областях.
Определено, что клинические проявления, связанные с исчезновением субпластины в первичной сенсорной и двигательной областях через три месяца после родов, совпадают с большим переходом в двигательном поведении, а именно, спонтанно генерируемые общие движения сменяются целенаправленными движениями, формируется адаптивное поведение на изменение факторов окружающей среды.
Отражены некоторые клинико-диагностические особенности при выявлении ранних нарушений нейропсихического развития с учетом этапов созревания головного мозга (миелинизация, синаптогенез).
Рассмотрены некоторые из наиболее распространенных диагностических шкал, тестов. Показаны наиболее значимые моторные шкалы в грудном возрасте, используемые для прогнозирования результата. Выделены некоторые стандартизированные неврологические оценки. Определено понятие программы раннего вмешательства у новорожденных с высоким риском развития детского церебрального паралича и когнитивных нарушений.
Авторы заявляют об отсутствии конфликта интересов.
Ключевые слова: новорожденный, мозг, ранняя диагностика, шкалы, двигательные нарушения, ДЦП.
ЛИТЕРАТУРА

1. Akhbari Ziegler S, von Rhein M, Meichtry A, Wirz M, Hielkema T, Hadders-Algra M. (2020). Swiss Neonatal Network & Follow-Up Group. The Coping with and Caring for Infants with Special Needs intervention was associated with improved motor development in preterm infants. Acta Paediatr. 10: 1189-1120. https://doi.org/10.1111/apa.15619; PMid:33047325 PMCid:PMC7984220

2. Als H, Lawhon G, Duffy FH, McAnulty GB, Gibes-Grossman R, Blickman JG. (1984). Individualized developmental care for the very low-birth-weight preterm infant. Medical and neurofunctional effects. JAMA. 272 (11): 853-858. https://doi.org/10.1001/jama.272.11.853; PMid:8078162

3. Anderson PJ, Burnett A. (2017). Assessing developmental delay in early childhood — concerns with the Bayley-III scales. Clin. Neuropsychol. 31 (2): 371-381. https://doi.org/10.1080/13854046.2016.1216518; PMid:27687612

4. Annink KV, de Vries LS, Groenendaal F, Vijlbrief DC, Weeke LC, Roehr CC, Lequin M, Reiss I, Govaert P, Benders MJNL et al. (2020). The development and validation of a cerebral ultrasound scoring system for infants with hypoxic-ischaemic encephalopathy. Pediatr. Res. 87 (1): 59-66. https://doi.org/10.1038/s41390-020-0782-0; PMid:32218538 PMCid:PMC7098882

5. Azari N, Soleimani F, Vameghi R, Sajedi F, Shahshahani S, Karimi H et al. (2017). A Psychometric study of the Bayley Scales of Infant and Toddler Development in Persian Language Children. Iranian Journal of Child Neurology. 11 (1): 50-56. https://doi.org/10.22037/ijcn.v11i1.12056.

6. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513 (5): 532-541. https://doi.org/10.1002/cne.21974; PMid:19226510

7. Bax M, Goldstein M, Rosenbaum P et al. (2005). Proposed definition and classification of cerebral palsy. Journal of Developmental Medicine and Child Neurology. 47 (8): 571-576. https://doi.org/10.1017/S001216220500112X; PMid:16108461

8. Ben-Ari, Y, Spitzer NC. (2010). Phenotypic checkpoints regulate neuronal development. Trends Neurosci. 33 (11): 485-492. https://doi.org/10.1016/j.tins.2010.08.005; PMid:20864191 PMCid:PMC2963711

9. Benders MJNL, Kersbergen KJ, de Vries LS. (2014). Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin. Perinatol. 41 (1): 69-82. https://doi.org/10.1016/j.clp.2013.09.005; PMid:24524447

10. Bodkin AW, Robinson C, Perales FP. (2003). Reliability and validity of the gross motor function classification system for cerebral palsy. Pediatric Physical Therapy. 15 (4): 247-252. https://doi.org/10.1097/01.PEP.0000096384.19136.02; PMid:17057460

11. Bosanquet M, Copeland L, Ware R, Boyd R. (2013). A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 55 (5): 418-426. https://doi.org/10.1111/dmcn.12140; PMid:23574478

12. Brazelton, T. B. (1973). Neonatal Behavioral Assessment Scale. Clinics in Developmental Medicine, No. 50. London: William Heinemann Medical Books. Philadelphia: J. B. Lippincott: 66.

13. Brody BA, Kinney HC, Kloman AS, Gilles FH. (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46 (3): 283-301. https://doi.org/10.1097/00005072-198705000-00005; PMid:3559630

14. Bruggink JL, Einspieler C, Butcher PR, Van Braeckel KN, Prechtl HF, Bos AF. (2008). The quality of the early motor repertoire in preterm infants predicts minor neurologic dysfunction at school age. J Pediatr. 153 (1): 32-39. https://doi.org/10.1016/j.jpeds.2007.12.047; PMid:18571531

15. Bruggink JL, Van Braeckel KN, Bos AF. (2010). The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics. 125 (6): 1356-63. https://doi.org/10.1542/peds.2009-2117; PMid:20457678

16. Bystron I, Blakemore C, Rakic P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9 (2): 110-122. https://doi.org/10.1038/nrn2252; PMid:18209730

17. Cabrera-Martos I, Valenza MC, Valenza-Demet G, Benítez-Feliponi A, Robles-Vizcaíno C, Ruiz-Extremera A. (2016). Effects of manual therapy on treatment duration and motor development in infants with severe nonsynostotic plagiocephaly: a randomised controlled pilot study. Childs Nerv Syst. 32 (11): 2211-2217. https://doi.org/10.1007/s00381-016-3200-5; PMid:27465676

18. Campbell S K, Kolobe TH, Wright BD, Linacre JM. (2002). Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale. Dev. Med. Child. Neurol. 44 (4): 263-272. https://doi.org/10.1017/S0012162201002043; PMid:11995895

19. Campbell SK, Kolobe TH, Osten ET, Lenke M, Girolami GL. (1995). Construct validity of the test of infant motor performance. Phys. Ther. 75 (7): 585-596. https://doi.org/10.1093/ptj/75.7.585; PMid:7604077

20. Celnik P, Hummel F, Cohen LG. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation. 88 (11): 1369-1369. https://doi.org/10.1016/j.apmr.2007.08.001; PMid:17964875

21. Chamudot R, Parush S, Rigbi A, Horovitz R, Gross-Tsur V. (2018). Effectiveness of modified constraint-induced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: A randomized controlled trial. Am. J. Occup. Ther. 72 (6): 7206205010p1-7206205010p9. https://doi.org/10.5014/ajot.2018.025981; PMid:30760393

22. Cioni G, Ferrari F, Einspieler C, Paolicelli PB, Barbani MT, Prechtl HF. (1997). Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr. 130 (5): 704-711. https://doi.org/10.1016/S0022-3476(97)80010-8; PMid:9152277

23. Darrah J, Bartlett D, Maguire TO, Avison WR, Lacaze-Masmonteil T. (2014). Have infant gross motor abilities changed in 20 years? A re-evaluation of the Alberta Infant Motor Scale normative values. Dev Med Child Neurol. 56 (9): 877-881. https://doi.org/10.1111/dmcn.12452; PMid:24684556 PMCid:PMC4293464

24. Delobel-Ayoub M, Saemundsen E, Gissler M, Ego A, Moilanen I, Ebeling H, Rafnsson V, Klapouszczak D, Thorsteinsson E, Arnaldsdóttir KM et al. (2020). Prevalence of Autism Spectrum Disorder in 7-9-Year-Old Children in Denmark, Finland, France and Iceland: A Population-Based Registries Approach Within the ASDEU Project. J. Autism. Dev. Disord. 50 (3): 949-959. https://doi.org/10.1007/s10803-019-04328-y; PMid:31813107

25. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. (2013). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience. 276: 48-71. https://doi.org/10.1016/j.neuroscience.2013.12.044; PMid:24378955

26. Dubowitz L, Dubowitz V, Mercuri E. (1999). The Neurological Assessment of the Preterm and Full-term Infant. 2nd ed. London: 167.

27. Dubowitz L, Mercuri E, Dubowitz V. (1998). An optimality score for the neurologic examination of the term newborn. J Pediatr. 133 (3): 406-416. https://doi.org/10.1016/S0022-3476(98)70279-3; PMid:9738726

28. Ecker C. (2017). The neuroanatomy of autism spectrum disorder. An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism. 21 (1): 18-28. https://doi.org/10.1177/1362361315627136; PMid:26975670

29. Einspieler C, Prechtl HFR, Ferrari F et al. (1997). The qualitative assessment of general movements in preterm, term and young infants-review of the methodology. Early Human Development. 50 (1): 47-60. https://doi.org/10.1016/S0378-3782(97)00092-3; PMid:9467693

30. Eliasson AC, Nordstrand L, Ek L, Lennartsson F, Sjöstrand L, Tedroff K, Krumlinde-Sundholm L. (2018). The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design. Res. Dev. Disabil. 72: 191-201. https://doi.org/10.1016/j.ridd.2017.11.006; PMid:29175749

31. El-Khoury N, Braun A, Hu F et al. (2006). Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 59 (5): 673-679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c; PMid:16627880

32. Eyre J.A. (2007). Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 31 (8): 1136-1149. https://doi.org/10.1016/j.neubiorev.2007.05.011; PMid:18053875

33. Ferrari F, Cioni G, Einspieler C, Roversi MF, Bos AF, Paolicelli PB et al. (2002). Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med. 156 (5): 460-467. https://doi.org/10.1001/archpedi.156.5.460; PMid:11980551

34. Ferrari F, Cioni G, Prechtl HFR. (1990). Qualitative changes of general movements in preterm infants with brain lesions. Early Hum Dev. 23 (3): 193-231. https://doi.org/10.1016/0378-3782(90)90013-9; PMid:2253580

35. Fleuren KMW, Smit LS, Stijnen T, Hartman A. (2007). New reference values for the Alberta Infant Motor Scale need to be established. Acta Paediatr. 96 (3): 424-427. https://doi.org/10.1111/j.1651-2227.2007.00111.x; PMid:17407470

36. Franki I, Mailleux L, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. (2020). The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part A, Structural imaging. Res. Dev. Disabil. 100: 103606. https://doi.org/10.1016/j.ridd.2020.103606; PMid:32192951

37. Fuentefria R. do N, Silveira RC, Procianoy RS. (2017). Motor development of preterm infants assessed by the Alberta Infant Motor Scale: systematic review article. J Pediatr (Rio J). 93 (4): 328-342. https://doi.org/10.1016/j.jped.2017.03.003; PMid:28506665

38. Gooding JS, Cooper LG, Blaine AI, Franck LS, Howse JL, Berns SD. (2011). Family support and family-centered care in the neonatal intensive care unit: origins, advances, impact. Semin. Perinatol. 35 (1): 20-28. https://doi.org/10.1053/j.semperi.2010.10.004; PMid:21255703

39. Gotz M, Huttner WB. (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 6 (10): 777-788. https://doi.org/10.1038/nrm1739; PMid:16314867

40. Hadders-Algra M, Heineman KR. (2021). The Infant Motor Profile. Routledge. Abingdon: 174. https://doi.org/10.4324/9780429341915

41. Hadders-Algra M. (2002). Two distinct forms of minor neurological dysfunction: perspectives emerging from a review of data of the Groningen Perinatal Project. Dev. Med. Child Neurol. 44 (8): 561-571. https://doi.org/10.1017/S0012162201002560; PMid:12206624

42. Hadders-Algra M. (2018). Early human brain development: Starring the subplate. Neurosci. Biobehav. Rev. 92: 276-290. https://doi.org/10.1016/j.neubiorev.2018.06.017; PMid:29935204

43. Hadders-Algra M. (2018). Early human motor development: From variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 90: 411-427. https://doi.org/10.1016/j.neubiorev.2018.05.009; PMid:29752957

44. Hadders-Algra M. (2018). Neural substrate and clinical significance of general move-ments: an update. Dev. Med. Child. Neurol. 60: 39-46. https://doi.org/10.1111/dmcn.13540; PMid:28832987

45. Hadders-Algra M. (2021). Early Diagnostics and Early Intervention in Neurodevelopmental Disorders — Age-Dependent Challenges and Opportunities. J Clin Med. 10 (4): 861. https://doi.org/10.3390/jcm10040861; PMid:33669727 PMCid:PMC7922888

46. Haynes RL, Borenstein NS, Desilva TM, Folkert RD, Liu LG, Volpe JJ, Kinney HC. (2005). Axonal development in the cerebral white matter of the human fetus and infant. J. Comp. Neurol. 484 (2): 156-167. https://doi.org/10.1002/cne.20453; PMid:15736232

47. Heineman KR, Bos AF, Hadders-Algra M. (2008). The Infant Motor Profile: A standardized and qualitative method to assess motor behaviour in infancy. Dev. Med. Child Neurol. 50 (4): 275-282. https://doi.org/10.1111/j.1469-8749.2008.02035.x; PMid:18279412

48. Heineman KR, Schendelaar P, Van den Heuvel ER, Hadders-Algra M. (2018). Motor development in infancy is related to cognitive function at 4 years of age. Dev. Med. Child Neurol. 60 (11): 1149-1155. https://doi.org/10.1111/dmcn.13761; PMid:29633244

49. Гельбрюге Теодор. (2006). Розвиток немовлят. Пер. з нім. Марти Стасюк. Львів: Астролябія: 208.

50. Hielkema T, Blauw-Hospers CH, Dirks T, Drijver-Messelink M, Bos AF, Hadders-Algra M. (2011). Does physiotherapeutic intervention affect motor outcome in high-risk infants? An approach combining a randomized controlled trial and process evaluation. Dev. Med. Child Neurol. 53 (3): e8-e15. https://doi.org/10.1111/j.1469-8749.2010.03876.x; PMid:21291457

51. Hielkema T, Boxum AG, Hamer EG, La Bastide-Van Gemert S, Dirks T, Reinders-Messelink HA, Maathuis CGB, Verheijden J, Geertzen JHB, Hadders-Algra M. (2020). LEARN2MOVE 0-2 years, a randomized early intervention trial for infants at very high risk of cerebral palsy: family outcome and infant's functional outcome. Disabil. Rehabil. 42 (26): 3762-3770. https://doi.org/10.1080/09638288.2019.1610509; PMid:31141410

52. Hoerder-Suabedissen A, Molnár Z. (2015). Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16 (3): 133-146. https://doi.org/10.1038/nrn3915; PMid:25697157

53. Holland D, Chang L, Ernst TM, Curran M, Buchthal SD, Alicata D, Skranes J, Johansen H, Hernandez A, Yamakawa R, Kuperman JM, Dale AM. (2014). Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol. 71 (10): 1266-1274. https://doi.org/10.1001/jamaneurol.2014.1638; PMid:25111045 PMCid:PMC4940157

54. Міжнародна класифікація функціонування, обмеження життєдіяльності і здоров’я. (2001). Женева: ВООЗ: 256. URL: http://moz.gov.ua/uploads/1/5262-dn_20180523_981_dod_1.pdf.

55. Міжнародна класифікація функціонування, обмеження життєдіяльності і здоров’я дітей та підлітків. (2007). Женева: ВООЗ: 366. URL: http://moz.gov.ua/uploads/1/5263-dn_20180523_981_dod_2.pdf.

56. Judaš M, Sedmak G, Kostović I. (2013). The significance of the subplate for evolution and developmental plasticity of the human brain. Front. Hum. Neurosci. 7: 423. https://doi.org/10.3389/fnhum.2013.00423; PMid:23935575 PMCid:PMC3731572

57. Kennedy E, Majnemer A, Farmer J-P, Barr RG, Platt RW. (2009). Motor development of infants with positional plagiocephaly. Phys Occup Ther Pediatr. 29 (3): 222-235. https://doi.org/10.1080/01942630903011016; PMid:19842852

58. Kinney HC, Brody BA, Kloman AS, Gilles FH. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47 (3): 217-234. https://doi.org/10.1097/00005072-198805000-00003; PMid:3367155

59. Кирилова ЛГ, Мартиненко ЯА. (2015). Сучасні аспекти патогенезу ураження головного мозку в дітей, котрі народилися з екстремально низькою масою тіла. Перинатология и педиатрия. 4(64): 64-68. URL: http://nbuv.gov.ua/UJRN/perynatology_2015_4_14. https://doi.org/10.15574/PP.2015.64.64

60. Kostović I, Jovanov-Milosević N. (2006). The development of cerebral connections during the first 20-45 weeks' gestation. Semin. Fetal Neonatal. Med. 11 (6): 415-422. https://doi.org/10.1016/j.siny.2006.07.001; PMid:16962836

61. Kostović I, Kostović-Srzentić M, Benjak V, Jovanov-Milošević N, Radoš M. (2014). Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front. Neurol. 5: 139. https://doi.org/10.3389/fneur.2014.00139; PMid:25120530 PMCid:PMC4114264

62. Kostović I, Sedmak G, Judaš M. (2019). Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage. 188: 743-773. https://doi.org/10.1016/j.neuroimage.2018.12.043; PMid:30594683

63. Kostović I, Sedmak G, Vukšić M, Judaš M. (2015). The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci. Ther. 21 (2): 74-82. https://doi.org/10.1111/cns.12333; PMid:25312583 PMCid:PMC6495198

64. Kwon SH, Vasung L, Ment LR, Huppi PS. (2014). The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin. Perinatol. 41 (1): 257-283. https://doi.org/10.1016/j.clp.2013.10.003; PMid:24524459

65. Lacey J, Rudge S, Rieger I, Osborn DA. (2004). Assessment of neurological status in preterm infants in neonatal intensive care and prediction of cerebral palsy. Aust J Physiother. 50 (3): 137-44. https://doi.org/10.1016/S0004-9514(14)60151-3; PMid:15482244

66. Lai DC, Tseng YC, Guo HR. (2013). Trends in the prevalence of childhood disability: analysis of data from the national disability registry of Taiwan, 2000-2011. Res. Dev. Disabil. 34 (11): 3766-3772. https://doi.org/10.1016/j.ridd.2013.08.001; PMid:24021391

67. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 40 (3): 1044-1055. https://doi.org/10.1016/j.neuroimage.2007.12.053; PMid:18295509

68. Levene MI, Chervenak FA. (2009). Fetal and Neonatal Neurology and Neurosurgery. Elsevier Health Sciences: 921.

69. Lossi L, Merighi A. (2003). In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol. 69 (5): 287-312. https://doi.org/10.1016/S0301-0082(03)00051-0; PMid:12787572

70. Lowe JR, Erickson SJ, Schrader R, Duncan AF. (2012). Comparison of the Bayley II Mental Developmental Index and the Bayley III Cognitive Scale: are we measuring the same thing? Acta Paediatr. 101 (2): е55-58. https://doi.org/10.1111/j.1651-2227.2011.02517.x; PMid:22054168 PMCid:PMC3560971

71. Lui JH, Hansen DV, Kriegstein AR. (2011). Development and evolution of the human neocortex. Cell. 146 (1): 18-36. https://doi.org/10.1016/j.cell.2011.06.030; PMid:21729779 PMCid:PMC3610574

72. Luttikhuizen Dos Santos ES, de Kieviet JF, Konigs M, van Elburg RM, Oosterlaan J. (2013). Predictive value of the Bayley scales of Infant development on development of very preterm/very low birth weight children: a meta-analysis. Early Hum Dev. 89 (7): 487-96. https://doi.org/10.1016/j.earlhumdev.2013.03.008; PMid:23597678

73. Mailleux L, Franki I, Emsell L, Peedima ML, Fehrenbach A, Feys H, Ortibus E. (2020). The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part B diffusion imaging and tractography. Res. Dev. Disabil. 97: 103569. https://doi.org/10.1016/j.ridd.2019.103569; PMid:31901671

74. Martinez-Biarge M, Groenendaal F, Kersbergen KJ, Benders MJNL, Foti F, Cowan FM, de Vries LS. (2016). MRI based preterm white matter injury classification: The importance of sequential imaging in determining severity of injury. PLoS One. 11 (6): e0156245. https://doi.org/10.1371/journal.pone.0156245; PMid:27257863 PMCid:PMC4892507

75. Мартинюк ВЮ. (2016). Основи соціальної педіатрії : навч.-метод. посібн.: у 2 т. Київ: ФОП Верес ОІ. 1: 479.

76. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. (2011). Prevalence of intellectual disability: а meta-analysis of population-based studies. Res. Dev. Disabil. 32 (2): 419-436. https://doi.org/10.1016/j.ridd.2010.12.018; PMid:21236634

77. McGuire DO, Tian LH, Yeargin-Allsopp M, Dowling NF, Christensen DL. (2019). Prevalence of cerebral palsy, intellectual disability, hearing loss, and blindness, National Health Interview Survey, 2009-2016. Disabil. Health J. 12 (3): 443-451. https://doi.org/10.1016/j.dhjo.2019.01.005; PMid:30713095 PMCid:PMC7605150

78. Mercuri E, Guzzetta A, Laroche S, Ricci D, Van Haastert I, Simpson A et al. (2003). Neurologic examination of preterm infants at term age: comparison with term infants. J Pediatr. 142 (6): 647-655. https://doi.org/10.1067/mpd.2003.215; PMid:12838193

79. Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD. (2011). Spontaneous electrical activity in the human fetal cortex in vitro. J. Neurosci. 31 (7): 2391-2398. https://doi.org/10.1523/JNEUROSCI.3886-10.2011; PMid:21325506 PMCid:PMC3564513

80. Morgan C, Novak I, Dale RC, Guzzetta A, Badawi N. (2016). Single blind randomised controlled trial of GAME (Goals-Activity — Motor Enrichment) in infants at high risk of cerebral palsy. Res. Dev. Disabil. 55: 256-267. https://doi.org/10.1016/j.ridd.2016.04.005; PMid:27164480

81. Morris C, Bartlett D. (2004). Gross Motor Function Classification System: impact and utility. Developmental Medicine and Child Neurology. 46 (1): 60-65. https://doi.org/10.1017/S0012162204000118; PMid:14974650

82. Mrzljak L, Uylings HB, Kostović I, van Eden CG. (1992). Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J. Comp. Neurol. 316 (4): 485-496. https://doi.org/10.1002/cne.903160408; PMid:1577996

83. O'Brien K, Bracht M, Robson K, Ye XY, Mirea L, Cruz M, Ng E, Monterrosa L, Soraisham A, Alvaro R et al. (2015). Evaluation of the Family Integrated Care model of neonatal intensive care: а cluster randomized controlled trial in Canada and Australia. BMC Pediatr. 15: 210. https://doi.org/10.1186/s12887-015-0527-0; PMid:26671340 PMCid:PMC4681024

84. Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha, Sigman M et al. (2010). A prospective study of the emergence of early behavioral signs of autism. J. Am. Acad. Child Adolesc. Psychiatry. 49 (3): 256-266. PMCID: PMC2923050. https://doi.org/10.1016/j.jaac.2009.11.009

85. Palisano RJ, Rosenbaum PD, Bartlett D, Livingston MH. (2008). Content validity of the expanded and revised Gross Motor Function Classification System Dev. Med. Child. Neurol. 50 (10): 744-750. https://doi.org/10.1111/j.1469-8749.2008.03089.x; PMid:18834387

86. Perlman JM. (2008). Neurology: Neonatology Questions and Controversies. Saunders: Elsevier: 288.

87. Peyton C, Schreiber MD, Msall ME. (2018). The Test of Infant Motor Performance at 3 months predicts language, cognitive, and motor outcomes in infants born preterm at 2 years of age. Dev. Med. Child Neurol. 60 (12): 1239-1243. https://doi.org/10.1111/dmcn.13736; PMid:29532917

88. Piper M, Darrah J. (2021). Motor Assessment of the Developing Infant. E-Book: Alberta Infant Motor Scale (AIMS): 288. https://doi.org/10.3389/fneur.2022.949720; PMid:35968314 PMCid:PMC9366671

89. Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ. (1992). Construction and validation of the Alberta Infant Motor Scale (AIMS). Can J Public Health. 83 (2): S46-50. URL: https://pubmed.ncbi.nlm.nih.gov/1468050/.

90. Prechtl H. (1990). Qualitative changes of spontaneous movements in fetus and preterm infants are the marker of neurological dyssfuction. Early Human Development. 23 (3): 151-158. https://doi.org/10.1016/0378-3782(90)90011-7; PMid:2253578

91. Prechtl HF, Hopkins B. (1986). Developmental transformations of spontaneous movements in early infancy. Early Hum. Dev. 14 (3-4): 233-238. https://doi.org/10.1016/0378-3782(86)90184-2; PMid:3803269

92. Prechtl HF. (2001). General movement assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Dev. Med. Child. Neurol. 43 (12): 836-842. https://doi.org/10.1017/S0012162201001529; PMid:11769272

93. Prechtl HFR, Beintema DJ. (1964). The Neurological Examination of the Full-Term Newborn Infant (Little Club Clinics Development Medicine Series, No. 12). Heinemann Medical. London: 76.

94. Prechtl HFR, Einspieler C, Cioni G et al. (1997). An early marker for neurological deficits after perinatal brain lesions. Lancet. 349 (9062): 1361-1363. https://doi.org/10.1016/S0140-6736(96)10182-3; PMid:9149699

95. Prechtl HFR. (1998). Early prediction of later neurological defecits. Longitudinal studies in children at risk: Satellite Meeting of the 8-th International Congress in Ljubljana. Vienna: 5-6.

96. Procianoy RS, Corso AL, Longo MG, Vedolin L, Silveira RC. (2019). Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy: magnetic resonance imaging findings and neurological outcomes in a Brazilian cohort. J Matern Fetal Neonatal Med. 32 (16): 2727-2734. https://doi.org/10.1080/14767058.2018.1448773; PMid:29504433

97. Rakic P, Sidman RL. (1970). Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J. Comp. Neurol. 139 (4): 473-500. https://doi.org/10.1002/cne.901390407; PMid:4195699

98. Ranjitkar S, Kvestad I, Strand TA, Ulak M, Shrestha M, Chandyo RK, Hysing M. (2018). Acceptability and reliability of the Bayley Scales of Infant and Toddler Development-III among children in Bhaktapur, Nepal. Frontiers in Psychology. 9: 1265. https://doi.org/10.3389/fpsyg.2018.01265; PMid:30087639 PMCid:PMC6066572

99. Richards JE, Xie W. (2015). Brains for all the ages: structural neurodevelopment in infants and children from a life-span perspective. Adv. Child Dev. Behav. 48: 1-52. https://doi.org/10.1016/bs.acdb.2014.11.001; PMid:25735940

100. Rizzi R, Menici V, Cioni ML, Cecchi A, Barzacchi V, Beani E, Giampietri M, Cioni G, Sgandurra G, Clinical CareToy-R Consortium. (2021). Concurrent and predictive validity of the infant motor profile in infants at risk of neurodevelopmental disorders. BMC Pediatr. 21 (1): 68. https://doi.org/10.1186/s12887-021-02522-5; PMid:33549070 PMCid:PMC7866878

101. Romeo DM, Ricci D, Brogna C, Mercuri E. (2016). Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: а critical review of the literature. Dev. Med. Child Neurol. 58 (3): 240-245. https://doi.org/10.1111/dmcn.12876; PMid:26306473

102. Saccani R, Valentini NC, Pereira KRG. (2016). New Brazilian developmental curves and reference values for the Alberta infant motor scale. Infant Behav Dev. 45 (Pt A): 38-46. https://doi.org/10.1016/j.infbeh.2016.09.002; PMid:27636655

103. Sato W, Uono S. (2019). The atypical social brain network in autism: аdvances in structural and functional MRI studies. Curr. Opin. Neurol. 32 (4): 617-621. https://doi.org/10.1097/WCO.0000000000000713; PMid:31135458

104. SCPE. (2018). Scientific report 1998 — 2018. Surveillance of Cerebral Palsy in Europe. URL: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/SCPE%20Scientific%20report%201998-2018.pdf.

105. Sellier E, McIntyre S, Smithers-Sheedy H, Platt MJ, SCPE and ACPR Groups. (2020). European and Australian Cerebral Palsy Surveillance Networks Working Together for Collaborative Research. Neuropediatrics. 51 (2): 105-112. https://doi.org/10.1055/s-0039-3402003; PMid:31910452

106. Sgandurra G, Bartalena L, Cecchi F, Cioni G, Giampietri M, Greisen G, Herskind A, Inguaggiato E, Lorentzen J, Nielsen JB et al. (2016). A pilot study on early home-based intervention through an intelligent baby gym (CareToy) in preterm infants. Res. Dev. Disabil. 53-54: 32-42. https://doi.org/10.1016/j.ridd.2016.01.013; PMid:26851385

107. Skiold B, Eriksson C, Eliasson AC, Aden U, Vollmer B. (2013). General movements and magnetic resonance imaging in the prediction of neuromotor outcome in children born extremely preterm. Early Hum Dev. 89 (7): 467-472. https://doi.org/10.1016/j.earlhumdev.2013.03.014; PMid:23623716

108. Spittle AJ, Boyd RN, Inder TE, Doyle LW. (2009). Predicting motor development in very preterm infants at 12 months' corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 123 (2): 512517. https://doi.org/10.1542/peds.2008-0590; PMid:19171616

109. Syrengelas D, Kalampoki V, Kleisiouni P, Konstantinou D, Siahanidou T. (2014). Gross motor development in full-term Greek infants assessed by the Alberta Infant Motor Scale: reference values and socioeconomic impact. Early Hum Dev. 90 (7): 353-357. https://doi.org/10.1016/j.earlhumdev.2014.04.011; PMid:24796209

110. Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WK, Murad S, Omar RZ, Robertson NJ. (2010). Cerebral magnetic resonance biomarkers in neonatal encephalopathy: а meta-analysis. Pediatrics. 125 (2): e382-e395. https://doi.org/10.1542/peds.2009-1046; PMid:20083516

111. Trivedi R, Gupta RK, Husain N, Rathore RK, Saksena S, Srivastava S, Malik GK, Das V, Pradhan M, Sarma MK, Pandey CM, Narayana PA. (2009). Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. Neuroradiology. 51 (9): 567-576. https://doi.org/10.1007/s00234-009-0533-8; PMid:19421746

112. Tudella E, Pereira K, Basso RP, Savelsbergh GJP. (2011). Description of the motor development of 3-12 month old infants with Down syndrome: the influence of the postural body position. Res Dev Disabil. 32 (5): 1514-1520. https://doi.org/10.1016/j.ridd.2011.01.046; PMid:21367575

113. Uusitalo K, Haataja L, Nyman A et al. (2021). Hammersmith Infant Neurological Examination and long-term cognitive outcome in children born very preterm Dev. Med. Child. Neurol. 63 (8): 947-953. https://doi.org/10.1111/dmcn.14873; PMid:33834473

114. Uzark K, Smith C, Donohue J, Yu S, Romano JC. (2017). Infant Motor Skills After a Cardiac Operation: The Need for Developmental Monitoring and Care. Ann Thorac Surg. 104 (2): 681-686. https://doi.org/10.1016/j.athoracsur.2016.12.032; PMid:28347538

115. Van Schie PE, Becher JG, Dallmeijer AJ, Barkhof F, Weissenbruch MM, Vermeulen RJ. (2007). Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy. Neuropediatrics. 38 (2): 71-77. https://doi.org/10.1055/s-2007-984449; PMid:17712734

116. Van't Hooft J, van der Lee JH, Opmeer BC, Aarnoudse-Moens CS, Leenders AG, Mol BW, de Haan TR. (2015). Predicting developmental outcomes in premature infants by term equivalent MRI: systematic review and meta-analysis. Syst. Rev. 4: 71. https://doi.org/10.1186/s13643-015-0058-7; PMid:25982565 PMCid:PMC4438620

117. Venkata SKRG, Pournami F, Prabhakar J, Nandakumar A, Jain N. (2020). Disability prediction by early Hammersmith Neonatal Neurological Examination: A diagnostic study. J. Child Neurol. 35 (11): 731-736. https://doi.org/10.1177/0883073820930487; PMid:32516057

118. Verkhratsky A, Butt A. (2007). Glial neurobiology: А textbook. John Wiley & Sons Ltd. England: 230. https://doi.org/10.1002/9780470517796

119. Volpe JJ. (2008). Neurology of the newborn. 5-th: Saunders Elsevier: 1194.

120. Volpe JJ. (2009). Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol. 24 (9): 1085-1104. https://doi.org/10.1177/0883073809338067; PMid:19745085 PMCid:PMC2799249

121. Volpe JJ. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8 (1): 110-124. https://doi.org/10.1016/S1474-4422(08)70294-1; PMid:19081519

122. Wang LY, Wang YL, Wang ST, Huang CC. (2013). Using the Alberta Infant Motor Scale to early identify very low-birth-weight infants with cystic periventricular leukomalacia. Brain Dev. 35 (1): 32-37. https://doi.org/10.1016/j.braindev.2011.08.012; PMid:21959127

123. Wu YC, Heineman KR, la Bastide-van Gemert S, Kuiper D, Drenth Olivares M, Hadders-Algra M. (2020). Motor behaviour in infancy is associated with cognitive, neurological and behavioural function in 9-year-old children born to parents with reduced fertility. Dev. Med. Child Neurol. 62 (9): 1089-1095. https://doi.org/10.1111/dmcn.14520; PMid:32222973 PMCid:PMC7496844

124. Yakovlev PL, Lecours AR. (1967). The myelogenetic cycles of regional maturation of the brain. In Regional Development of the Brain in Early Life. Oxford: Blackwell: 3-70.

125. Yap PT, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D. (2011). Development trends of white matter connectivity in the first years of life. PLoS One 6 (9): е24678. https://doi.org/10.1371/journal.pone.0024678; PMid:21966364 PMCid:PMC3179462

126. Євтушенко СК, Яновская НВ, Сухоносова ОЮ. (2016). Неврология раннего детского возраста. Киев: ИД Заславский АЮ: 288. URL: http://www.mif-ua.com/book-shop/book-34205.html.

127. Yue A, Jiang Q, Wang B, Abbey C, Medina A, Shi Y, & Rozelle, S. (2019). Concurrent validity of the Ages and Stages Questionnaire and the Bayley Scales of Infant Development III in China. PLoS One. 14 (9): e0221675. https://doi.org/10.1371/journal.pone.0221675; PMid:31487302 PMCid:PMC6728026

128. Знаменська ТК, Нікуліна ЛІ, Руденко НГ, Воробйова ОВ. (2017). Аналіз роботи перинатальних центрів у виходжуванні передчасно народження дітей в Україні. Неонатологія, хірургія та перинатальна медицина. Т. 7. 2 (24): 5-11. https://doi.org/10.24061/2413-4260.VII.2.24.2017.1