• Цифровой томосинтез в диагностике заболеваний грудных желез: роcкошь или необходимость? (Аналитический обзор литературы)
ru К содержанию

Цифровой томосинтез в диагностике заболеваний грудных желез: роcкошь или необходимость? (Аналитический обзор литературы)

HEALTH OF WOMAN. 2017.8(124):108–115
 

Дыкан И. Н., Божок Е. Н., Гурандо А. В., Козаренко Т. М.

ГУ «Институт ядерной медицины и лучевой диагностики НАМН Украины», г. Киев

AВ статье проанализированы данные научных публикаций о современных аспектах диагностики заболеваний грудных желез (ГЖ) с помощью производной технологии от цифровой маммографии (Full-Field Digital Mammography – FFDM) – томосинтеза (Digital Breast tomosynthesis – DBT), а также его преимущества и недостатки по сравнению со стандартными маммографическими исследованиями при визуализации новообразований ГЖ, микрокальцинатов, деформаций матрикса и асимметрий.
Одним из главных преимуществ DBT является определение характеристик и оценка краев образований и выявление деформаций матрикса, не видимых на FFDM и аналоговой маммографии (стандартная маммография – СМ).
DBT нивелирует артефакт суммации теней, который приводит к гипердиагностике при FFDM, и улучшает точность диагностики примерно на 7%, снижает количество повторных вызовов со скрининга от 17% до 38% для образований без микрокальцинатов, уменьшает количество биопсий примерно на 39%, благодаря лучшей визуализации опухоли, улучшает выявление рака ГЖ на 8% при меньших размерах и на более ранних стадиях.
Характеристика сгруппированных микрокальцинатов с помощью DBT до сих пор все еще остается неоднозначной и противоречивой и требует дальнейших исследований.
Впервые в Украине технология DBT была реализована в конце 2014 г. в Государственном учреждении «Институт ядерной медицины и лучевой диагностики НАМН Украины» в отделении маммологии и общей рентгенологии, где была установлена маммографическая система Selenia® Dimensions® system’s Genius ™ 3D MAMMOGRAPHY™ с опцией DBT фирмы Hologic, США.
В результате анализа научной литературы статистически доказано, что цифровой томосинтез является необходимой опцией в алгоритме диагностики заболеваний ГЖ.
Ключевые слова: цифровая маммография, цифровой томосинтез грудных желез, УЗИ грудных желез, МРТ грудных желез, Selenia Hologic, деформации матрикса, сгруппированные микрокальцинаты, рак грудной железы.

Литература:
1. Божок Є.М., Гурандо А.В. (2017). Імітація раку локальною асиметрією грудної залози. Клінічний випадок. Лучевая диагностика. Лучевая Терапия. 2: 68–73.

2. Michell MJ, Iqbal A, Wasan RK et al. 2012. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin. Radiol. 67:976–81. https://doi.org/10.1016/j.crad.2012.03.009; PMid:22625656

3. Harvey JA, Mahoney MC, Newell MS et al. 2013. American College of Radiology ACR Appropriateness Criteria Palpable Breast Masses. J Am Coll Radiol. 10(10):742–9. https://doi.org/10.1016/j.jacr.2013.06.013; PMid:24091044

4. Rafferty EA, Park JM, Philpotts LE et al. 2013. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 266(1):104–13. https://doi.org/10.1148/radiol.12120674

5. Reiser I, Nishikawa RM, Edwards AV et al. 2008. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study. Med Phys. 35:1486–1493. https://doi.org/10.1118/1.2885366; PMid:18491543 PMCid:PMC2811555

6. Baker JA, Lo JY. 2011. Breast tomosynthesis: state of the art and review of the literature. Acad Radiol. 18:1298–1310. https://doi.org/10.1016/j.acra.2011.06.011; PMid:21893296

7. D’Orsi CJ, Mendelson EB, Ikeda DM et al. 2003. Breast Imaging Reporting and Data System: ACR BI-RADS—breast imaging atlas, 4th ed. Reston, VA: American College of Radiology. PMCid:PMC3146363

8. Britton P, Sonoda L, Yamamoto A et al. 2011. Breast surgical specimen radiographs: how reliable are they? Eur J Radiol. 79:245–249. https://doi.org/10.1016/j.ejrad.2010.02.012; PMid:20303687

9. Andersson I, Ikeda D, Zackrisson S et al. 2008. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. European Radiology. 18(12):2817–25. https://doi.org/10.1007/s00330-008-1076-9; PMid:18641998

10. Kopans D, Gavenonis S, Halpern E, Moore R. 2011. Calcifications in the breast and digital breast tomosynthesis. Breast J. 17:638–644. https://doi.org/10.1111/j.1524-4741.2011.01152.x; PMid:21906207

11. Castronovo V, Bellahcene A. 1998. Evidence that breast cancer associated microcalcifications are mineralized malignant cells. Int J Oncol. 12:305–308. https://doi.org/10.3892/ijo.12.2.305

12. Tagliafico A, Mariscotti G, Durando M et al. 2015. Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): does DBT underestimate microcalcification clusters? results of a multicentre study. Eur Radiol. 25:9–14. https://doi.org/10.1007/s00330-014-3402-8; PMid:25163902

13. Helvie MA, Hadjiiski L, Goodsitt MM et al. 2008. Characterization of benign and malignant breast masses by digital breast tomosynthesis mammography. Radiological Society of North America 94th Scientific Assembly and Annual Meeting; Chicago, IL.

14. Berg WA, Blume JD, Cormack JB et al. 2008. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 299:2151–2163. https://doi.org/10.1001/jama.299.18.2151; PMid:18477782 PMCid:PMC2718688

15. Choi JS, Han BK, Ko EY et al. 2016. Comparison between two-dimensional synthetic mammography reconstructed from digital breast tomosynthesis and full-field digital mammography for the detection of T1 breast cancer. EurRadiol. 26(8):2538–46. https://doi.org/10.1007/s00330-015-4083-7

16. Skaane P, Bandos AI, Gullien R et al. 2013. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 267:47–56. https://doi.org/10.1148/radiol.12121373; PMid:23297332

17. Dibble EH, Lourenco AP, Baird GL et al. 2017, Jul. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion. Eur Radiol. 14:1–8. https://doi.org/10.1007/s00330-017-4968-8.

18. Sechopoulos I, Suryanarayanan S, Vedantham S et al. 2007. Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med Phys. 34(1):221–232. https://doi.org/10.1118/1.2400836; PMid:17278508 PMCid:PMC4280100

19. Dance DR, Young KC, van Engen RE. 2011. Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys Med Biol. 56(2):453–471. https://doi.org/10.1088/0031-9155/56/2/011; PMid:21191150

20. Destounis SV, Arieno AL, Morgan RC. 2013. Preliminary clinical experience with digital breast tomosynthesis in the visualization of breast microcalcifications. J Clin Imaging Sci. 3:65. https://doi.org/10.4103/2156-7514.124099; PMid:24605260 PMCid:PMC3935251

21. Spangler ML, Zuley ML, Sumkin JH et al. 2011. Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison. AJR Am J Roentgenol. 196:320–324. https://doi.org/10.2214/AJR.10.4656; PMid:21257882

22. Allyson L. Chesebro, MD, Nicole S. Winkler, MD, Robin L. Birdwell, MD et al. 2016. Developing Asymmetries at Mammography: A Multimodality Approach to Assessment and Management. Radiographics. 36(2):322–34. https://doi.org/10.1148/rg.2016150123; PMid:26963449

23. Pisano ED, Gatsonis C, Hendrick E et al. 2005. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 353:1773–1783. https://doi.org/10.1056/NEJMoa052911; PMid:16169887

24. Poplack SP, Tosteson TD, Kogel CA, Nagy HM. 2007. Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol. 189:616–623. https://doi.org/10.2214/AJR.07.2231; PMid:17715109

25. Skaane P, Gullien R, Bjorndal H et al. 2012. Digital breast tomosynthesis (DBT): initial experience in a clinical setting. Acta Radiol. 53:524–9. https://doi.org/10.1258/ar.2012.120062; PMid:22593120

26. Noroozian M, Hadjiiski L, Rahnama-Moghadam S et al. 2012. Digital breast tomosynthesis is comparable to mammographic spot views for mass characterization. Radiology 262:61–8. https://doi.org/10.1148/radiol.11101763; PMid:21998048 PMCid:PMC3244671

27. Hellquist BN, Duffy SW, Abdsaleh S et al. 2011. Effectiveness of population-based service screening with mammography for women ages 40 to 49 years: evaluation of the Swedish Mammography Screening in Young Women (SCRY) cohort. Cancer. 117(4):714–22. https://doi.org/10.1002/cncr.25650; https://doi.org/10.1002/cncr.25999

28. Burrell H, Evans A, Wilson A, Pinder S. 2001. False-negative breast screening assessment: what lessons can we learn? Clin Radiol. 56:385–388. https://doi.org/10.1053/crad.2001.0662

29. Feng SS, Sechopoulos I. 2012. Clinical Digital Breast Tomosynthesis System: Dosimetric Characterization. Radiology. 263(1):35–42. https://doi.org/10.1148/radiol.11111789; PMid:22332070 PMCid:PMC3309800

30. Freer PE, Niell B, Rafferty EA. 2015. Preoperative tomosynthesis-guided needle localization of mammographically and sonographically occult breast lesions. Radiology. 275(2):377–383. https://doi.org/10.1148/radiol.14140515; PMid:25575115

31. Helvie Mark A, MD. 2010. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications. Radiol Clin North Am. 48(5):917–929. https://doi.org/10.1016/j.rcl.2010.06.009; PMid:20868894 PMCid:PMC3118307

32. Johnson JM, Dalton RR, Wester SM et al. 1999. Histological correlation of microcalcifications in breast biopsy specimens. Arch Surg. 134:712–716. https://doi.org/10.1001/archsurg.134.7.712; PMid:10401820

33. Chamming’s F, Kao E, Aldis A et al. 2017. Imaging features and conspicuity of invasive lobular carcinomas on digital breast tomosynthesis. Br J Radiol. 90(1073). doi: 10. 1259/ bjr.20170128. https: //doi. org/ 10.1259/ bjr.20170128.

34. Ciatto S, Houssami N, Bernardi D et al. 2013. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 14:583–589. https://doi.org/10.1016/S1470-2045(13)70134-7

35. Knutzen AM, Gisvold JJ. 1993. Likelihood of malignant disease for various categories of mammographically detected, nonpalpable breast lesions. Mayo Clin Proc. 68:454–460. https://doi.org/10.1016/S0025-6196(12)60194-3

36. Kopans DB. 2014. Digital Breast Tomosynthesis From Concept to Clinical Care. American Journal of Roentgenology. 202:299-308. https://doi.org/10.2214/AJR.13.11520; PMid:24450669

37. Kopans DB. 2011. Just the facts: mammography saves lives with little if any radiation risk to the mature breast. Health Phys. 101:578–582. https://doi.org/10.1097/HP.0b013e3182254e93; PMid:21979544

38. Kopans DB, Monsees B, Feig SA. 2003. Screening for cancer: when is it valid? Lessons from the mammography experience. Radiology. 229:319–327. https://doi.org/10.1148/radiol.2292021272; PMid:14595137

39. Ma AKW, Darambara DG, Stewart A et al. 2008. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations. Med Phys. 35(12):5278–5289. https://doi.org/10.1118/1.3002310; PMid:19175087

40. Morgan MP, Cooke MM, McCarthy GM. 2005. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia. 10:181–187. https://doi.org/10.1007/s10911-005-5400-6; PMid:16025224

41. Partyka L, Lourenco AP, Mainiero MB. 2014. Detection of mammographically occult architectural distortion on digital breast tomosynthesis screening: initial clinical experience. AJR Am J Roentgenol. 203(1):216–222. https://doi.org/10.2214/AJR.13.11047

42. Venkatesan A, Chu P, Kerlikowske K et al. 2009. Positive predictive value of specific mammographic findings according to reader and patient variables. Radiology. 250(3):648–657. https://doi.org/10.1148/radiol.2503080541; PMid:19164116 PMCid:PMC2680167

43. Yankaskas BC, Schell MJ, Bird RE, Desrochers DA. 2001. Reassessment of breast cancers missed during routine screening mammography: a community-based study. AJR. 177:535–541. https://doi.org/10.2214/ajr.177.3.1770535; PMid:11517043

44. Taskin F, Durum Y, Soyder A, Unsal A. 2017. Review and management of breast lesions detected with breast tomosynthesis but not visible on mammography and ultrasonography. Acta Radiol. https://doi.org/10.1177/0284185117710681

45. Nelson HD, Tyne K, Naik A et al. 2009. Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 151:727–737. https://doi.org/10.7326/0003-4819-151-10-200911170-00009; PMid:19920273 PMCid:PMC2972726

46. Burrell HC, Sibbering DM, Wilson AR et al. 1996. Screening interval breast cancers: mammographic features and prognostic factors. Radiology. 199:811–817. https://doi.org/10.1148/radiology.199.3.8638010; PMid:8638010

47. Sechopoulos I, D’Orsi CJ. 2008. Glandular radiation dose in tomosynthesis of the breast using tungsten targets. J Appl Clin Med Phys. 9(4):2887. https://doi.org/10.1120/jacmp.v9i4.2887

48. Warner E, Plewes DB, Hill KA et al. 2004. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 292:1317–1325. https://doi.org/10.1001/jama.292.11.1317; PMid:15367553

49. Ray KM, Turner E, Sickles EA, Joe BN. 2015. Suspicious Findings at Digital Breast Tomosynthesis Occult to Conventional Digital Mammography: Imaging Features and Pathology Findings. Breast J. 21(5):538–42. https://doi.org/10.1111/tbj.12446; PMid:26148173

50. Smith RA, Duffy SW, Gabe R et al. 2004. The randomized trials of breast cancer screening: what have we learned? Radiol Clin North Am. 42:793–806. https://doi.org/10.1016/j.rcl.2004.06.014; PMid:15337416

51. Durand MA, Wang S, Hooley RJ et al. 2016. Tomosynthesis-detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation. RadioGraphics. 36(2):311–321. https://doi.org/10.1148/rg.2016150093; PMid:26963448

52. Byun J, Lee JE, Cha ES et al. 2017. Visualization of Breast Microcalcifications on Digital Breast Tomosynthesis and 2-Dimensional Digital Mammography Using Specimens. Breast Cancer: Basic and Clinical Research 11. http://doi.org/10.1177/1178223417703388.