• Эволюция и возрастные особенности врожденной и адаптивной иммунной системы 
ru К содержанию Полный текст статьи

Эволюция и возрастные особенности врожденной и адаптивной иммунной системы 

SOVREMENNAYA PEDIATRIYA.2016.3(75):74-84; doi10.15574/SP.2016.75.74

Эволюция и возрастные особенности врожденной и адаптивной иммунной системы 

Абатуров А. Е., Агафонова Е. А., Абатурова Н. И., Бабич В. Л.

ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины»

КУ «Днепропетровская областная детская клиническая больница», Украина 

В статье отражены основные принципы функционирования иммунной системы. Даны представления об органах и клетках иммунной системы, врожденном и адаптивном иммунитете. Показаны возрастные особенности эволюционирования иммунного ответа.


Ключевые слова: иммунитет, врожденный иммунитет, адаптивный иммунитет.


Литература

1. A thymus candidate in lampreys / B. Bajoghli et al. // Nature. — 2011. — Vol. 470, №. 7332. — Р. 90—94. http://dx.doi.org/10.1038/nature09655

2. An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi / H. Sekine [et al.] // The Journal of Immunology. — 2001. — Vol. 167, №. 8. — Р. 4504—4510. http://dx.doi.org/10.4049/jimmunol.167.8.4504; PMid:11591777

3. Antibacterial gene transfer across the tree of life / J. A. Metcalf et al. // Elife. — 2014. — Vol. 3. — Р. e04266. http://dx.doi.org/10.7554/eLife.04266.

4. Boehm T. Evolution of lymphoid tissues / T. Boehm, I. Hess, J. B. Swann // Trends in immunology. — 2012. — Vol. 33, №. 6. — Р. 315—321. http://dx.doi.org/10.1016/j.it.2012.02.005.

5. Broderick N. A. A common origin for immunity and digestion / N. A. Broderick // Frontiers in immunology. — 2015. — Vol. 6. — P. 72. http://dx.doi.org/10.3389/fimmu.2015.00072.

6. Carrillo-Bustamante P. Can selective MHC downregulation explain the specificity and genetic diversity of NK cell receptors? / P. Carrillo-Bustamante, C. Kesmir, R. J. de Boer // Frontiers in immunology. — 2015. — Vol. 6. http://dx.doi.org/10.3389/fimmu.2015.00311

7. Carrillo-Bustamante P. The evolution of natural killer cell receptors / P. Carrillo-Bustamante, C. Kesmir, R. J. de Boer // Immunogenetics. — 2016. — Vol. 68, №. 1. — Р. 3—18. http://dx.doi.org/10.1007/s00251-015-0869-7.

8. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program / K. Hebel [et al.] // The Journal of Immunology. — 2014. — № 192. — Р. 5160—5170. http://dx.doi.org/10.4049/jimmunol.1302539.

9. Chuang T. H. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9 / T. H. Chuang, R. J. Ulevitch // European cytokine network. — 2000. — Vol. 11, №. 3. — Р. 372—378. PMid:11022120

10. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man / J. K. Kulski [et al.] // Immunological reviews. — 2002. — Vol. 190, №. 1. — Р. 95—122. http://dx.doi.org/10.1034/j.1600-065X.2002.19008.x; PMid:12493009

11. Conversion of the thymus into a bipotent lymphoid organ by replacement of FOXN1 with its paralog, FOXN4 / J. B. Swann [et al.] // Cell reports. — 2014. — Vol. 8, №. 4. — Р. 1184—1197. http://dx.doi.org/10.1016/j.celrep.2014.07.017.

12. Davies B. Superoxide generation during phagocytosis by Acanthamoeba castellanii: similarities to the respiratory burst of immune phagocytes / B. Davies, L. S. Chattings, S. W. Edwards // Microbiology. — 1991. — Vol. 137, №. 3. — Р. 705—710. http://dx.doi.org/10.1099/00221287-137-3-705

13. Defining the origins of the NOD-like receptor system at the base of animal evolution / C. Lange [et al.] // Molecular biology and evolution. — 2011. — Vol. 28, №. 5. — Р. 1687—1702. http://dx.doi.org/10.1093/molbev/msq349.

14. Differentiation and functional regulation of human fetal NK cells / M. A. Ivarsson [et al.] // Journal of Clinical Investigation. — 2013. — № 123. — Р. 3889—3901. http://dx.doi.org/10.1172/JCI68989.

15. Diminished expression of CD40 ligand by activated neonatal T cells / S. Nonoyama [et al.] // Journal of Clinical Investigation. — 1995. — Vol. 95, №. 1. — Р. 66.

16. Dooley H. Antibody repertoire development in cartilaginous fish / H. Dooley, M. F. Flajnik // Developmental & Comparative Immunology. — 2006. — Vol. 30, №. 1. — Р. 43—56. http://dx.doi.org/10.1016/j.dci.2005.06.022; PMid:16146649.

17. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase / I. B. Rogozin [et al.] // Nature immunology. — 2007. — Vol. 8, №. 6. — Р. 647—656. http://dx.doi.org/10.1038/ni1463; PMid:17468760.

18. Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates / B. Bajoghli [et al.] // Cell. — 2009. — Vol. 138, №. 1. — Р. 186—197. http://dx.doi.org/10.1016/j.cell.2009.04.017.

19. Evolution of natural killer cell receptors: coexistence of functional Ly49 and KIR genes in baboons / D. L. Mager [et al.] // Current Biology. — 2001. — Vol. 11, №. 8. — Р. 626—630. (PMID: 11369209). http://dx.doi.org/10.1016/S0960-9822(01)00148-8

20. Extramedullary haematopoiesis in the kidney / D. Ricci [et al.] // Clinical kidney journal. — 2012. — Vol. 5, №. 2. — Р. 143—145. http://dx.doi.org/10.1093/ckj/sfs015

21. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans / J. E. Mold [et al.] // Science. — 2010. — № 330. — Р. 1695—1699. http://dx.doi.org/10.1126/science.1196509.

22. Flajnik M. F. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system / M. F. Flajnik, M. Kasahara // Immunity. — 2001. — Vol. 15, №. 3. — Р. 351—362. http://dx.doi.org/10.1016/S1074-7613(01)00198-4

23. Flajnik M. F. Origin and evolution of the adaptive immune system: genetic events and selective pressures / M. F. Flajnik, M. Kasahara // Nature Reviews Genetics. — 2010. — Vol. 11, №. 1. — Р. 47—59. http://dx.doi.org/10.1038/nrg2703.

24. Frank S. A. Immunology and Evolution of Infectious Disease / S. A. Frank. — Princeton University Press, 2002. — 349 р.

25. Fugmann S. D. The origins of the Rag genes-from transposition to V (D) J recombination / S. D. Fugmann // Seminars in immunology. — Academic Press, 2010. — Vol. 22, №. 1. — Р. 10—16. http://dx.doi.org/10.1016/j.smim.2009.11.004.

26. Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity / T. Fujita // Nature Reviews Immunology. — 2002. — Vol. 2, №. 5. — Р. 346—353. http://dx.doi.org/10.1038/nri800; PMid:12033740.

27. Ge Q. Evolution of thymus organogenesis / Q. Ge, Y. Zhao // Developmental & Comparative Immunology. — 2013. — Vol. 39, №. 1. — Р. 85—90. http://dx.doi.org/10.1016/j.dci.2012.01.002.

28. Griffin D. O. A small CD11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus / D. O. Griffin, T. L. Rothstein // The Journal of experimental medicine. — 2011. — № 208. — Р. 2591—2598. http://dx.doi.org/10.1084/jem.20110978.

29. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens / M. S. Mackroth [et al.] // The Journal of Immunology. — 2011. — № 186. — Р. 2780—2791. http://dx.doi.org/10.4049/jimmunol.1001188.

30. Incidence of parathyroid glands located in thymus in patients with renal hyperparathyroidism / N. Uno [et al.] // World journal of surgery. — 2008. — Vol. 32, №. 11. — Р. 2516—2519. http://dx.doi.org/10.1007/s00268-008-9739-x.

31. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants / D. Gibbons [et al.] // Nat. Med. — 2014. — № 20. — Р. 1206—1210. http://dx.doi.org/10.1038/nm.3670.

32. Kawahara T. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes / T. Kawahara, M. T. Quinn, J. D. Lambeth // BMC evolutionary biology. — 2007. — Vol. 7, №. 1. — Р. 109.

33. Kumar K. M. Distinct mechanisms of the newborn innate immunity / K. M. Kumar, B. V. Bhat // Immunol. Lett. — 2016. — Mar 16. pii: S0165-2478(16)30034-7 (doi: 10.1016/j.imlet.2016.03.009/).

34. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes / T. Uinuk-Ool [et al.] // Proceedings of the National Academy of Sciences. — 2002. — Vol. 99, №. 22. — Р. 14356—14361. http://dx.doi.org/10.1073/pnas.212527699; PMid:12391333 PMCid:PMC137888

35. Lee Y. C. Neonatal natural killer cell function: relevance to antiviral immune defense / Y. C. Lee, S. J. Lin // Clin. Dev. Immunol. — 2013. — 427696. http://dx.doi.org/10.1155/2013/427696.

36. Leulier F. Toll-like receptors-taking an evolutionary approach / F. Leulier, B. Lemaitre // Nature Reviews Genetics. — 2008. — Vol. 9, №. 3. — Р. 165—178. http://dx.doi.org/10.1038/nrg2303.

37. Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization / Nonaka M. [et al.] // Proceedings of the National Academy of Sciences. — 1997. — Vol. 94, №. 11. — Р. 5789—5791. http://dx.doi.org/10.1073/pnas.94.11.5789; PMid:9159152 PMCid:PMC20858

38. McCormack W. T. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion / W. T. McCormack, L. W. Tjoelker, C. B. Thompson // Annual review of immunology. — 1991. — Vol. 9, №. 1. — Р. 219—241. http://dx.doi.org/10.1146/annurev.iy.09.040191.001251; PMid:1910677

39. McGreal E. P. Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth / E. P. McGreal, K. Hearne, O. B. Spiller // Immunobiology. — 2012. — № 217. — Р. 176—186. http://dx.doi.org/10.1016/j.imbio.2011.07.027.

40. Metchnikoff E. Lectures on the comparative pathology of inflammation: delivered at the Pasteur Institute in 1891 / E. Metchnikoff. — Kegan Paul, Trench, Trubner, 1893.

41. Mubmann R. Is Xenopus IgX an analog of IgA? / R. Mubmann, L. Du Pasquier, E. Hsu // European journal of immunology. — 1996. — Vol. 26, №. 12. — Р. 2823—2830. http://dx.doi.org/10.1002/eji.1830261205; PMid:8977274

42. Neutrophil and endothelial adhesive function during human fetal ontogeny / C. Nussbaum [et al.] // J. Leukoc. Biol. — 2013. — № 93. — Р. 175—184. http://dx.doi.org/10.1189/jlb.0912468; PMid:23233729 PMCid:PMC4050519

43. Ontogeny of myeloid cells / I. De Kleer, F. Willems, B. Lambrecht, S. Goriely // Front. Immunol. — 2014. — № 5. — Р. 423. http://dx.doi.org/10.3389/fimmu.2014.00423.

44. Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development path-ways / E. Sanz [et al.] // Proc. Natl Acad. Sci. USA. — 2010. — № 107. — Р. 5925—5930. http://dx.doi.org/10.1073/pnas.0907942107.

45. Origin and evolution of the RIG-I like RNA helicase gene family / J. Zou [et al.] // BMC evolutionary biology. — 2009. — Vol. 9, №. 1. — Р. 1. http://dx.doi.org/10.1186/1471-2148-9-85.

46. Pettengill M. A. Soluble mediators regulating immunity in early life / M. A. Pettengill, S. D. van Haren, O. Levy // Front Immunol. — 2014. — Sep. 24. — №5. — P. 457. http://dx.doi.org/10.3389/fimmu.2014.00457.

47. Phagocytic ability of neutrophils and monocytes in neonates / A. Filias [et al.] // BMC Pediatr. — 2011. — № 11. — Р. 29. http://dx.doi.org/10.1186/1471-2431-11-29.

48. Phagocytosis of neonatal pathogens by peripheral blood neutrophils and monocytes from newborn preterm and term infants / A. Prosser [et al.] // Pediatric research. — 2013. — Т. 74. — №. 5. — Р. 503—510. http://dx.doi.org/10.1038/pr.2013.145.

49. Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system / Niedermann G. [et al.] // The Journal of experimental medicine. — 1997. — Vol. 186, №. 2. — Р. 209—220. http://dx.doi.org/10.1084/jem.186.2.209; PMid:9221750 PMCid:PMC2198974

50. Preterm neonates display altered plasmacytoid dendritic cell function and morphology / S. S. Schuller [et al.] // J. Leukoc. Biol. — 2013. — № 93. — Р. 781—788. http://dx.doi.org/10.1189/jlb.1011525.

51. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases / R. M. Bernstein [et al.] // Proceedings of the National Academy of Sciences. — 1996. — Vol. 93, №. 18. — Р. 9454—9459. http://dx.doi.org/10.1073/pnas.93.18.9454; PMid:8790351 PMCid:PMC38449

52. Reduced ability of neonatal and early-life bone marrow stromal cells to support plasmablast survival / M. Pihlgren [et al.] // The Journal of Immunology. — 2006. — № 176. — Р. 165—172. http://dx.doi.org/10.4049/jimmunol.176.1.165.

53. Reference values for B cell subpopulations from infancy to adulthood / H. Morbach [et al.] // Clinical & Experimental Immunology. — 2010. — Vol. 162, №. 2. — Р. 271—279. http://dx.doi.org/10.1111/j.1365-2249.2010.04206.x.

54. Simon A. K. Evolution of the immune system in humans from infancy to old age / A. K. Simon, G. A. Hollander, A. McMichael // Proc. R. Soc. B. — The Royal Society, 2015. — Vol. 282, №. 1821. — Р. 20143085. http://dx.doi.org/10.1098/rspb.2014.3085.

55. Slipka J. Evolution, development and involution of the thymus / J. Slipka, V. Pospisilova // Folia microbiologica. — 1998. — Vol. 43, №. 5. — Р. 527—530. http://dx.doi.org/10.1007/BF02820813

56. Smith L. C. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system / L. C. Smith, C. S. Shih, S. G. Dachenhausen // The Journal of Immunology. — 1998. — Vol. 161, №. 12. — Р. 6784—6793. PMid:9862709

57. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey / Z. Pancer [et al.] // Nature. — 2004. — Vol. 430, №. 6996. — Р. 174—180. http://dx.doi.org/10.1038/nature02740; PMid:15241406

58. Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity / K. R. Hinds-Frey [et al.] // The Journal of experimental medicine. — 1993. — Vol. 178, №. 3. — Р. 815—824. http://dx.doi.org/10.1084/jem.178.3.815; PMid:8350055

59. The evolution of vertebrate Toll-like receptors / J. C. Roach [et al.] // Proceedings of the National Academy of Sciences of the United States of America. — 2005. — Vol. 102, №. 27. — Р. 9577—9582. http://dx.doi.org/10.1073/pnas.0502272102; PMid:15976025 PMCid:PMC1172252

60. The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster / A. M. Martin [et al.] // Immunogenetics. — 2000. — Vol. 51, №. 4—5. — Р. 268—280.

61. The mammalian PYHIN gene family: phylogeny, evolution and expression / J. A. Cridland [et al.] // BMC evolutionary biology. — 2012. — Vol. 12, №. 1. — Р. 140.

62. Ting J. P. Y. CATERPILLER: a novel gene family important in immunity, cell death, and diseases / J. P. Y. Ting, B. K. Davis // Annu. Rev. Immunol. — 2005. — Vol. 23. — Р. 387—414. http://dx.doi.org/10.1146/annurev.immunol.23.021704.115616; PMid:15771576

63. Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby / E. S. W. Wong [et al.] // BMC genomics. — 2011. — Vol. 12, №. 1. — Р. 420. http://dx.doi.org/10.1186/1471-2164-12-420.

64. Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes / J. Trowsdale // Immunity. — 2001. — Vol. 15, №. 3. — Р. 363—374. http://dx.doi.org/10.1016/S1074-7613(01)00197-2

65. Warr G. W. IgY: clues to the origins of modern antibodies / G. W. Warr, K. E. Magor, D. A. Higgins // Immunology today. — 1995. — Vol. 16, №. 8. — Р. 392—398. http://dx.doi.org/10.1016/0167-5699(95)80008-5