• Unbound bilirubin as a predictor of neurotoxicity — the question of the future?
To content Full text of article

Unbound bilirubin as a predictor of neurotoxicity — the question of the future?

PERINATOLOGY AND PEDIATRIC. UKRAINE. 2018.4(76):67-73; doi 10.15574/PP.2018.76.67

Dobrovanov O., Kralinsky K.
3rd Children's Clinic of Slovak Medical University, General hospital with Polyclinic, Lucenec, Slovakia
St. Elizabeth University of Health and Social sciences, Bratislava, Slovakia
2nd Children's Clinic of Slovak Medical University, Children faculty hospital with polyclinic, Banska Bystrica, Slovakia
Faculty of Health Care of Slovak Medical University in Bratislava, based in Banska Bystrica, Slovakia

Unbound bilirubin is a relatively new biochemical parameter that is more informative in assessing the risk of bilirubin-induced neurological dysfunction, respectively of kernikter, can also be one of the indication criteria for transsanguage transfusion. It is a fraction of bilirubin in serum or plasma that is not bound to proteins and better passes through the blood-brain barrier. It may happen that in the near future there will be a change of opinion on the measurement of serum unconjugated bilirubin, especially in risk groups of newborns and management of neonatal jaundice. The greatest obstacle to the routine use of this parameter is a method that should be adapted for routine use in clinical practice. Increasing evidence based on clinical trials, clinical experience, and research into the neurotoxicity of bilirubin supports the effort to accelerate the incorporation of unbound bilirubin into the routine evaluation of neonatal jaundice.

Key words: jaundice, management, newborn, oxidative stress, phototherapy, unbound bilirubin


1. Ahlfors CE, Amin SB, Parker AE. (2009). Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J Perinatol. 29: 305–309. https://doi.org/10.1038/jp.2008.199; PMid:19242487 PMCid:PMC4285409

2. Ahlfors CE, Bhutani VK, Wong RJ, Stevenson DK. (2018, Jul 2). Bilirubin binding in jaundiced newborns: from bench to bedside? Pediatr Res. https://doi.org/10.1038/s41390-018-0010-3.

3. Ahlfors CE, Marshall GD, Wolcott DK, Olson DC, Van Overmeire B. (2006). Measurement of unbound bilirubin by the peroxidase test using Zone Fluidics. Clin Chim Acta. 365(1–2): 78–85. https://doi.org/10.1016/j.cca.2005.07.030; PMid:16168977

4. Amin SB, Charafeddine L, Guillet R. (2005). Transient bilirubin encephalopathy and apnea of prematurity in 28 to 32 weeks gestational age infants. J Perinatol. 25(6): 386–390. https://doi.org/10.1038/sj.jp.7211295; PMid:15843815

5. Amin SB, Saluja S, Saili A, et al. (2017). Chronic Auditory Toxicity in Late Preterm and Term Infants With Significant Hyperbilirubinemia. Pediatrics. 140(4). https://doi.org/10.1542/peds.2016-4009; PMid:28954873 PMCid:PMC5613832.

6. Amin SB, Wang H. (2018). Bilirubin Albumin Binding and Unbound Unconjugated Hyperbilirubinemia in Premature Infants. J Pediatr. 192: 47–52. https://doi.org/10.1016/j.jpeds.2017.09.039; PMid:29132818 PMCid:PMC5732858

7. Amin SB. (2004). Clinical assessment of bilirubin-induced neurotoxicity in premature infants. Semin Perinatol. 28(5): 340—347. https://doi.org/10.1053/j.semperi.2004.09.005; PMid:15686265

8. Andreu Y, Ostra M, Ubide C, Galban J, de Marcos S, Castillo JR. (2002). Study of a fluorometricenzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration. Talanta. 57(2): 343–353. https://doi.org/10.1016/S0039-9140(02)00023-1

9. Basu S, DE, D, Dev Khanna H, et al. (2014, Jul). Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J Perinatol. 34(7): 519–23. https://doi.org/10.1038/jp.2014.45 [Epub ahead of print]

10. Bratlid D. (1990). How bilirubin gets into the brain. Clin Perinatol. 17(2): 449–465. https://doi.org/10.1016/S0095-5108(18)30578-5

11. Calligaris SD, Bellarosa C, Giraudi P, Wennberg RP, Ostrow JD, Tiribelli C. (2007). Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr Res. 62(5): 576–580. https://doi.org/10.1203/PDR.0b013e3181568c94; PMid:18049372

12. Daneman R. (2012). The blood-brain barrier in health and dissease. Ann Neurol. 72(5):648–672. https://doi.org/10.1002/ana.23648; PMid:23280789

13. Demova K, Fussiova M, Kovacsova M. (2017). Novorodenecka zltacka, Pediatr prax. 18(2): 51–58.

14. Gamaleldin R, Iskander I, Seoud I et al. (2011). Risk factors for neurotoxicity in newborns with severe neonatal hyperbilirubinemia. Pediatrics. 128(4): e925–e931. https://doi.org/10.1542/peds.2011-0206;PMid:21911352

15. Gupta N, Singh T, Chaudhary R et al. (2016). Bilirubin in coronary artery disease: Cytotoxic or protective? World J Gastrointest Pharmacol Ther. 7(4): 469–476. https://doi.org/10.4292/wjgpt.v7.i4.469; PMid:27867680

16. Hegyi T, Kleinfeld A, Huber A et al. (2018, Mar. 12). Unbound bilirubin measurements by a novel probe in preterm infants. J Matern Fetal Neonatal Med: 1–6. https://doi.org/10.1080/14767058.2018.1448380

17. Jacobsen J, Wennberg RP. (1974). Determination of unbound bilirubin in the serum of newborns. Clin Chem. 20(7): 783. PMid:4835230

18. Jon F. Watchko. (2016). Measurement of Circulating Unbound Bilirubin: Will It Ever Be a Part of Routine Neonatal Care? The Journal of Pediatrics. 173: 6–7. https://doi.org/10.1016/j.jpeds.2016.03.044; PMid:27063804

19. Lakowicz JR. (2001). Radiative decay engineering: biophysical and biomedical applications. Anal Biochem. 298(1): 1–24. https://doi.org/10.1006/abio.2001.5377; PMid:11673890

20. Letamendia-Richard E, Ammar RB, Tridente A, De Luca D. (2016). Relationship between transcutaneous bilirubin and circulating unbound bilirubin in jaundiced neonates. Early Hum Dev. 103: 235–239. https://doi.org/10.1016/j.earlhumdev.2016.10.005; PMid:27838549

21. Martelanca M, Ziberna L, Passamonti S, Franko M. (2014). Direct determination of free bilirubin in serum at sub-nanomolar levels. Analytica Chimia Acta. 809: 174–182. https://doi.org/10.1016/j.aca.2013.11.041; PMid:24418149

22. McDonagh AF, Vreman HJ, Wong RJ, Stevenson DK. (2009). Photoisomers: obfuscating factors in clinical peroxidase measurements of unbound bilirubin? Pediatrics. 123(1): 67–76. https://doi.org/10.1542/peds.2008-0492; PMid:19117862

23. Morioka I. (2018). Hyperbilirubinemia in preterm infants in Japan: New treatment criteria. Pediatrics International. 60: 684–690. https://doi.org/10.1111/ped.13635; PMid:29906300

24. Muoio V, Persson PB, Sendeski MM. (2014). The neurovascular unit — concept review. Acta Physiol (Oxf). 210(4): 790—798. https://doi.org/10.1111/apha.12250; PMid:24629161

25. Nag N, Halder S, Chaudhuri R et al. (2009). Role of bilirubin as antioxidant in neonatal jaundice and effect of ethanolic extract of sweet lime peel on experimentally induced jaundice in rat. Indian Journal of Biochemistry & Biophysics. 46: 73—78. PMid:19374257

26. Nakamura H, Yonetani M, Uetani Y, Funato M, Lee Y. (1992). Determination of serum unbound bilirubin for prediction of kernicterus in low birthweight infants. Acta Paediatr Jpn. 34(6): 642–647. https://doi.org/10.1111/j.1442-200X.1992.tb01024.x; PMid:1285512

27. Ostrow JD, Mukerjee P, Tiribelli C. (1994). Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. J Lipid Res. 35(10): 1715—1737. PMid:7852850

28. Pi’ha J. (2014). Bariery nervoveho systemu za fyziologickych a patologickych stavuю Cesk Slov Neurol. 77; 110(5): 553–559.

29. Raye-Ann deRegnier. (2018). The uncomfortable problem of unbound bilirubin in extremely preterm infants. The Journal of Pediatrics. 192: 1. https://doi.org/10.1016/j.jpeds.2017.11.002; https://doi.org/10.1016/j.jpeds.2018.03.019; https://doi.org/10.1016/j.jpeds.2018.09.014

30. Ruud Hansen TW. (2015). Phototherapy for neonatal jaundice — therapeutic effects on more than one level? Semin Perinatol. 34(3): 231—234. https://doi.org/10.1053/j.semperi.2010.02.008; PMid:20494740

31. Sanjiv B, Amin MD et al. (2011). Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates, Semin Perinatol. 35(3): 134—140. https://doi.org/10.1053/j.semperi.2011.02.007; PMid:21641486

32. Sgro M, Campbell D, Shah V. (2006). Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 175(6): 587—590. https://doi.org/10.1503/cmaj.060328; PMid:16966660

33. Shapiro SM. (2003). Bilirubin toxicity in the developing nervous system. Pediatr Neurol. 29(5): 410–421. https://doi.org/10.1016/j.pediatrneurol.2003.09.011; PMid:14684236

34. Shekeeb Shahab M, Kumar P et al. (2008). Evaluation of oxidant and antioxidant status in term neonates: A plausible protective role of bilirubin. Mol Cell Biochem. 317(1–2): 51–59. https://doi.org/10.1007/s11010-008-9807-4; PMid:18560765

35. Shimabuku R, Nakamura H. (1982). Total and unbound bilirubin determination using an automated peroxidase micromethod. Kobe J Med Sci. 28(2): 91–104. PMid:6285074

36. Stark AM, Bhutani VK. (2017). Neonatal hyperbilirubinemia. In: Cloherty and Stark's Manual of Neonatal Care. 8th ed. Lippincott Williams & Wilkins: 335–352. PMid:28509628

37. Tilling T, Engelbertz C, Decker S, Korte D, Huwel S, Galla HJ. (2002). Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 310(1): 19–29. https://doi.org/10.1007/s00441-002-0604-1; PMid:12242480

38. Vitek L, Jirsa Jr M, Brodanova M et al. (2002). Gilbert Syndrome and Ischemic Heart Disease: A Protective Effect of Elevated Bilirubin Levels. Atherosclerosis. 160(2): 449–456. https://doi.org/10.1016/S0021-9150(01)00601-3

39. Volpe J. (2001). Bilirubin and brain injury. In: Neurology of the Newborn. 5th ed. Philadelphia: Saunders Elseveir: 619–651.

40. Wang X, Chowdhury JR et al. (2006). Bilirubin metabolism: Applied physiology Current. Paediatrics. 16: 70–74. https://doi.org/10.1016/j.metabol.2006.06.019; PMid:17046551

41. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. (2013). The blood-brain barrier: an engineering perspective. Front Neuroeng. 6: 7. https://doi.org/10.1182/blood-2012-10-462655; https://doi.org/10.1182/blood-2012-06-434373; https://doi.org/10.1182/blood-2013-05-503359; https://doi.org/10.1182/blood-2013-03-489641; https://doi.org/10.1182/blood-2012-12-475863; https://doi.org/10.1182/blood-2013-07-511170; https://doi.org/10.1182/blood-2012-06-436691; https://doi.org/10.1182/blood-2012-10-460618; https://doi.org/10.1182/blood-2012-11-467787; https://doi.org/10.1182/blood-2012-08-451765; https://doi.org/10.1182/blood-2013-06-506691; https://doi.org/10.1182/blood-2013-05-499806; https://doi.org/10.1182/blood-2012-07-445205; PMid:23372168 PMCid:PMC3617636

42. Ziberna L, Martelanc M et al. (2016). Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells, Scientific Reports. 6: 29240. https://doi.org/10.1038/srep29240; PMid:27381978 PMCid:PMC4933905

Article received: Aug 12, 2018. Accepted for publication: Nov 12, 2018.