• The features of abnormalities in children born with extremely low birth weight 
To content

The features of abnormalities in children born with extremely low birth weight 

SOVREMENNAYA PEDIATRIYA.2015.6(70):86-89; doi 10.15574/SP.2015.70.86 
 

The features of abnormalities in children born with extremely low birth weight 
 

Kirillova L. G., Martynenko Ya. A.

SI «Institute of Pediatrics, Obstetrics and Gynecology NAMS of Ukraine», Kiev

PD «Kherson Regional Children's Clinical Hospital» Kherson Regional Council, Ukraine

Medical Center of Physical Therapy and Pain Medicine «Innovo», Lviv, Ukraine 
 

A retrospective analysis of case histories of children, born weighing less than 1000 g is conducted. It is shown that in newborns with extremely low birth weight during the birth can be assumed the presence of congenital anomalies of the brain (disturbance of neuronal proliferation and migration and cortical organization). Traditional imaging techniques (ultrasound examination and structural brain MRI) are subjective and do not allow to predict the degree of neurological disorders in the future. 
 

Key words: prematurity, extremely low birth weight, brain, magnetic resonance imaging. 
 

References

1. Kidokoro H, Anderson P, Doyle LW et al. 2014. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 134: 444—453. http://dx.doi.org/10.1542/peds.2013-2336; PMid:25070300

2. Rose J, Vassar R, Cahill-Rowley K et al. 2014. Brain microstructural development at near-term age in very-lowbirth-weight preterm infants: An atlas-based diffusion imaging study. Neuroimage. 1(86): 244—256. http://dx.doi.org/10.1016/j.neuroimage.2013.09.053; PMid:24091089 PMCid:PMC3985290

3. Fenton T. 2003. A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatrics. 3(13): 1—10.

4. Moore T, Hennessy E, Myles J et al. 2012. Neurological and development outcome in extremely preterm children born in Englend in 1995 and 2006: the EPICure studies. BMJ. 345: 7961—7974. http://dx.doi.org/10.1136/bmj.e7961; PMid:23212880 PMCid:PMC3514471

5. Plaisier A, Govaert P, Lequin M et al. 2013. Optimal timing of cerebral MRI in preterm infants to predict long-term neurodevelopmental outcome: a systematic review. Am J Neuroradiol. 2: 1—7.

6. Okabayashi S, Uchida K, Nakayama H et al. Periventricular leucomalacia (PVL) — like lesions in two neonatal cynomolgus monkeys (Macaca fascicularis). J Comp Pathol. 144: 204-211. http://dx.doi.org/10.1016/j.jcpa.2010.06.006; PMid:20705303

7. Dudink J, Pieterman K, Leemans A et al. 2015. Recent advancements in diffusion MRI forin investigating cortical development after preter birth — potential and pitfalls. Front Hum Neurosci. 8: 1—7. http://dx.doi.org/10.3389/fnhum.2014.01066; PMid:25653607 PMCid:PMC4301014

8. Pogribna U, Burson K, Lasky R et al. 2014. Role of diffusion tensor imaging as an independent predictor of cognitive and language development in extremely low-birth-weight infants. Am J Neuroradiol. 35(4): 790—796. http://dx.doi.org/10.3174/ajnr.A3725; PMid:24052505 PMCid:PMC3960368

9. Brouwer M, Kooij B, Haastert I et al. 2014. Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLOSS ONE. 9: 1—10. http://dx.doi.org/10.1371/journal.pone.0109556

10. Mathur A, Neil J, Inder T et al. 2010. Understanding brain injury and neurodevelopmental disabilities in the preterm infant: the evolving role of advanced MRI. Semin Perinatol. 34(1): 57—66. http://dx.doi.org/10.1053/j.semperi.2009.10.006; PMid:20109973 PMCid:PMC2864915

11. Volpe J. 2009. Brain injury in premature infants: a compex amalgam of destructive and development disturbances. Lancet. 8(1): 110—124. http://dx.doi.org/10.1016/S1474-4422(08)70294-1