• Placental syndrome as possible risk factor for preeclampsia development (Literature review)
To content

Placental syndrome as possible risk factor for preeclampsia development (Literature review)

HEALTH OF WOMAN. 2018.5(132):113–117; doi 10.15574/HW.2018.132.113

Artyomenko V. V., Berlinskaya L. I.
Odessa national medical University

The modern studies review summarizes the data of recent years, which covers issues related to the preeclampsia pathogenesis study on the placental disturbances theory basis. The model of placental preeclampsia and factors that change before the development of its clinical manifestations a considered. Attention is paid to the placental factors possible combination analysis the are important in preventing the disease in terms of prognostic value.

Key words: preeclampsia, placental dysfunction, biochemical markers, placental weight.

REFERENCES

1. Zaichenko AV, Ryzhenko IM, Kudina AV, Pavlenko NYa, Andriyanenkov AV. 2008. Modern aspects of the pharmacological correction of placental dysfunction. The pharmacist. 9:47-51.

2. Cain MA, Salemi JL, Tanner JP et al. 2016. Pregnancy as a window to future health: maternal placental syndromes and short-term cardiovascular outcomes. Am J Obstet Gynecol. 215:484.e1-14.  https://doi.org/10.1016/j.ajog.2016.05.047; PMid:27263996

3. Thilaganathan B. 2017. Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol. 49:7–9.  https://doi.org/10.1002/uog.17378; PMid:28067440

4. Alanis MC, Johnson DD. 2008. Early initiation of severe  preeclampsia induction of labor is versus  elected cesarean delivery and newborn . American Journal of Obstetrics and Gynecology 199(3):262. e1. – 262. – 6.

5. Radzinsky VE. 2014. Prevention of reproductive losses: strategy and tactics. Featured Media Education Seminar «Innovation sinobstetric sandgyn  ecology  from  the  stand  point  of  evidence-based  medicine».  Newsletter.  M, Editorial Board Status Praesens: 24.

6. Redman CW. 2011. Preeclampsia: Definitions, paternal contributions and a four stage model. Pregnancy Hypertension: An International Journal of Women's Cardio-vascular Health 1(1):2-5. https://doi.org/10.1016/j.preghy.2010.12.003; PMid:26104227

7. Redman CW, Sargent IL. 2010. Immunology of preeclampsia. Am J Reprod Immunol. 63(6):534-43. https://doi.org/10.1111/j.1600-0897.2010.00831.x; PMid:20331588

8. Huppertz B. 2008. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51(4):970-5. https://doi.org/10.1161/HYPERTENSIONAHA.107.107607; PMid:18259009

9. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. 2009. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473-82. https://doi.org/10.1016/j.placenta.2009.02.009; PMid:19375795 PMCid:PMC2697319

10. Redman CWG. 2014. The six stages of preeclampsia. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health 4(3):246. https://doi.org/10.1016/j.preghy.2014.04.020; PMid:26104649

11. Redman CW. 2011. Preeclampsia: a multi-stress disorder. Rev Med Interne. 32(1): 41-4. https://doi.org/10.1016/j.revmed.2011.03.331; PMid:21530020

12. Redman CW, Sargent IL. 2009. Placental stress and preeclampsia: a revised view.  Placenta 30(1):38-42. https://doi.org/10.1016/j.placenta.2008.11.021; PMid:19138798

13. Jim В, Рhipps Е, Polsani S. 2013. Emerging New Biomarkers of Preeclampsia Advances in Chronic Kidney Disease. 20(3):271–279.

14. Romero R, Nien JK, Espinoza J, Todem D, Fu W, Chung H et al. 2008. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 21(1):9-23. https://doi.org/10.1080/14767050701830480; PMid:18175241 PMCid:PMC2587364

15. Ivanets TYu, Alekseeva ML, Goncharova EA, Khodjaeva ZS, Vavina OV. 2012. Markers of preeclampsia in the first and second trimesters of pregnancy. Reproduction problems 3:83-87.

16. Kleinrouweler C, Wiegerinck M, Ris-Stalpers C, Bossuyt P, van der Post J, von Dadelszen P, Mol B, Pajkrt E, for the EBM CONNECT Collaboration. 2012. Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of preeclampsia: a systematic review and meta-analysis. BJOG. 119:778–787. https://doi.org/10.1111/j.1471-0528.2012.03311.x; PMid:22433027

17. Kwame Adu-Bonsaffoh, Daniel Ansong Antwi , Ben Gyan and Samuel Amenyi Obed. 2017. Endothelial dysfunction in the pathogenesis of preeclampsia in Ghanaian women. BMC Physiology.17:5. https://doi.org/10.1186/s12899-017-0029-4; PMid:28356151 PMCid:PMC5372282

18. George EM, Granger JP. 2010. Recent insights into the pathophysiology of preeclampsia. Expert Rev Obstet Gynecol. 5(5):557–66. https://doi.org/10.1586/eog.10.45; PMid:21170149 PMCid:PMC3001629

19. Sarkisova EI, Orlov AV. 2013. Methods for predicting severe forms of eclampsia in early pregnancy. The medical bulletin of the South of Russia 4:21-25.

20. Raymond D, Peterson E. 2011. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 66(8):497–506. https://doi.org/10.1097/OGX.0b013e3182331028; PMid:22018452

21. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi JM. 2011. Preeclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manag. 7:467 – 74. PMid:21822394 PMCid:PMC3148420

22. Boucoiran L, Thissier-Levy S, Wu Yr MD, WeiS et at. 2013. Risks for Preeclampsia and Small for Gestational Age: Predictive Values of Placental Growth Factor, Soluble fms-like Tyrosine Kinase-1, and Inhibin A in Singleton and Multiple-Gestation Pregnancies. Am. J. Perinatal. 30:607-612. PMid:23208763

23. Devyatova EA. 2015. The eternal problems of obstetrics – preeclampsia, premature birth. Medicinal guide «GEOTAR». http://www.lsgeotar.ru/vechniye-problemi-akusherstva-preeklampsiya-prezhdevremenniye-rodi.html

24. Malanina EN, Medvedev MV. 2011. Combined screening of preeclampsia in 11-14 weeks of pregnancy: a literature review of modern methods for predicting and preventing severe gestosis. Prenat. Diag. 3:197-207.

25. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. 2011. Prediction of early, intermediate and late preeclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat. Diagn. 31:66–74. https://doi.org/10.1002/pd.2660; https://doi.org/10.1002/pd.2828; PMid:21210481

26. Elisa Llurba, Fatima Crispi, Stefan Verlohren. 2015. Update on the Pathophysiological Implications and Clinical Role of Angiogenic Factors in Pregnancy. Fetal Diagn Ther. 37:81–92. https://doi.org/10.1159/000368605; PMid:25659427

27. Lai J, Syngetaki A, Poon LCY, Nucci A, Nicolaides КH. 2013. Maternal Serum Soluble Endoglinat 30-33 Weeks in the Prediction of Preeclampsia. Fetal Diagn Ther. 33:149–155. https://doi.org/10.1159/000343665; https://doi.org/10.1159/000343220; PMid:23154616

28. Crosley EJ, Durland U, Seethram K, MacRae S, Gruslin A, Christians JK. 2014.  First-trimester levels of pregnancy-associated plasma protein A2 (PAPP-A2) in the maternal circulation are elevated in pregnancies that subsequently develop preeclampsia. Reprod Sci. 21:754-60. https://doi.org/10.1177/1933719113512532; PMid:24336677 PMCid:PMC4016723

29. Odibo AO, Zhong Y, Longtine M, Tuuli M, Odibo L, Cahill AG et al. 2011. First-trimester serum analytes, biophysical tests and the association with patho-logical morphometry in the placenta of pregnancies with preeclampsia and fetal growth restriction. Placenta. 32(4):333–338. https://doi.org/10.1016/j.placenta.2011.01.016; PMid:21324404 PMCid:PMC3673030

30. Poon LC, Stratieva V, Piras S et al. 2010.  Hypertensive disorders in pregnancy: combined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11—13 weeks. Prenat. Diagn.30(3):216—223. https://doi.org/10.1002/pd.2440

31. Shalin RI, Konovalova OV, Normantovich TO, Lebedev EV. 2010. Predicting gestosis in the first trimester of pregnancy: myth or reality? Questions of gynecology, obstetrics and perinatology 9(4):82-87.

32. Zhong Y, Tuuli M, Odibo AO. 2010. First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat Diagn. 30:293. https://doi.org/10.1002/pd.2475

33. Anderson UD, Olsson MG, Kristensen KH, Åkerström B, Hansson  SR. 2012. Review:  Biochemical  markers  to  predict  preeclampsia. Placenta 33:42—47. https://doi.org/10.1016/j.placenta.2011.11.021; PMid:22197626

34. Verlohren  S, Galindo  A,  Schlembach  D,  Zeisler  H,  Herraiz  I, Moertl MG, Pape J, Dudenhausen JW, Denk B, Stepan H. 2010. An automated method for the determination of the sFlt-1/PIGF ratio in  the  assessment of  preeclampsia. Am  J  Obstet  Gynecol. 202(2):161.e1—161.e11. https://doi.org/10.1016/j.ajog.2009.09.016; PMid:19850276

35. Olsson MG, Olofsson T, Tapper H, Akerstrom B. 2008. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by hem  e and reactive oxygen species. Free Radic Res. 42(8):725—736. https://doi.org/10.1080/10715760802337265; PMid:18712632

36. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. 2011. Prediction of early, intermediate and late preeclampsia from maternal  factors,  biophysical  and  biochemical  markers  at  11—13 weeks. Prenat Diagn. 31(1):66—74. https://doi.org/10.1002/pd.2660; PMid:21210481

37. Foidart JM, Munaut C, Chantraine F, Akolekar R, Nicolaides KH. 2010. Maternal plasma soluble endoglin at 11—13 weeks gestation in preeclampsia. Ultrasound Obstet Gynec. 35(6):680—687. PMid:20205159

38. Akolekar R, Syngelaki A, Beta J, Kocylowski R, Nicolaides KH. 2009. Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia. Prenat Diagn. 29(12):1103—1108. https://doi.org/10.1002/pd.2375; PMid:19777530

39. Khalil A, Cowans NJ, Spencer K, Goichman S, Meiri H, Harrington K. 2010. First-trimester markers for the prediction of preeclampsia in women with a-priori high risk. Ultrasound Obstet Gynec. 35(6):671—679. PMid:20069559

40. Odibo  AO, Zhong  Y,  Longtine  M,  Tuuli  M,  Odibo  L,  Cahill AG, Macones GA, Nelson DM. 2011. First-trimester serum analytes, biophysical tests and the association with pathological morphometry  in  the  placenta  of  pregnancies  with  preeclampsia  and  fetal growth restriction. Placenta 32(4):333 —338. https://doi.org/10.1016/j.placenta.2011.01.016; PMid:21324404 PMCid:PMC3673030

41. Poon  LC, Maiz  N,  Valencia  C,  Plasencia  W,  Nicolaides  KH. 2009. First-trimester maternal serum pregnancy-associated plasma protein-A and preeclampsia. Ultrasound Obstet G ynecol. 33(1):23—33. https://doi.org/10.1002/uog.6280; PMid:19090499

42. Zhang Y, Fei M, Xue G et al. 2012. Elevated levels of hypoxia-inducible microRNA-210 in preeclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med.16:249–259. https://doi.org/10.1111/j.1582-4934.2011.01291.x; PMid:21388517 PMCid:PMC3823289

43. Choi SY, Yun J, Lee OJ et al. 2013. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta 34:799–804. https://doi.org/10.1016/j.placenta.2013.06.006; PMid:23830491

44. Chen DB, Wang W. 2013. Human placental microRNAs and preeclampsia. Biol Reprod. 88:130. https://doi.org/10.1095/biolreprod.113.107805; PMid:23575145 PMCid:PMC4013914

45. Fanzhen Hong. 2014. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with preeclampsia. Yuyang Li and Yongping Xu. Journal of International Medical Research. 42(6):1243–1251. https://doi.org/10.1177/0300060514540627; PMid:25341970

46. Yang S, H Li, Q Ge Guo L and Chen F. 2015. Deregulated microRNA species in the plasma and placenta of patients with preeclampsia. Mol. Med. Rep. 12:527–534. https://doi.org/10.3892/mmr.2015.3414; PMid:25738738

47. Yan T, Liu Y, Cui K, Hu B, Wang F and Zou L. 2013. MicroRNA-126 regulates EPCs function: implications for a role of miR-126 in preeclampsia J. Cell. Biochem. 114:2148–2159. https://doi.org/10.1002/jcb.24563; PMid:23553946

48. Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y. 2010. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 24(6):2030–2039. https://doi.org/10.1096/fj.09-149724; PMid:20065103 PMCid:PMC2874470

49. Huang  X, Ding L, Bennewith  KL, Tong RT, Welford  SM, Ang KK et al. 2009. Hypoxia inducible mir-210 regulates normoxic gene expression  involved  in  tumor  initiation. Mol. Cell. 35(6):856–867. https://doi.org/10.1016/j.molcel.2009.09.006; PMid:19782034 PMCid:PMC2782615

50. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H,  Sheldon H, Harris AL, Gleadle JM, Ragoussis J. 2008. Нsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in  breast cancer. Clin. Cancer Res. 14(5):1340–1348.

51. Zhang C, Li Q, Ren N, Li C, Wang X, Xie M et al. 2015. Placental miR-106a-363 cluster is dysregulated in preeclamptic placenta. Placenta 36:250. https://doi.org/10.1016/j.placenta.2014.11.020; PMid:25499681

52. Ura B, Feriotto G, Monasta L, Bilel S, Zweyer M, Celeghini C. 2014. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 53(2):232-234. https://doi.org/10.1016/j.tjog.2014.03.001; PMid:25017274

53. Luo R, Shao X, Xu P, Liu Y, Wang Y, Zhao Y et al. 2014. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 64:839-845. https://doi.org/10.1161/HYPERTENSIONAHA.114.03530; PMid:24980667

54. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX et al. 2014. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 63:1276-1284. https://doi.org/10.1161/HYPERTENSIONAHA.113.02647; PMid:24664294

55. Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB et al. 2013. MiR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am J Pathol. 183:1437-1445. https://doi.org/10.1016/j.ajpath.2013.07.021; PMid:24035613 PMCid:PMC3814521

56. Liu C, Zhou Y and Zhang  Z. 2012. MiR-210: an important player in the pathogenesis of preeclampsia. J. Cell. Mol. Med. 16:943–944. https://doi.org/10.1111/j.1582-4934.2011.01370.x; PMid:21692987 PMCid:PMC3822863

57. Muralimanoharan S, Maloyan  A, Mele J, Guo C, Myatt LG,  Myatt L. 2012. MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta. 33:816–823. https://doi.org/10.1016/j.placenta.2012.07.002; PMid:22840297 PMCid:PMC3439551

58. Luo R, Shao X, Xu P, Liu Y, Wang Y, Zhao Y et al. 2014.  MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension 64:839–845. https://doi.org/10.1161/HYPERTENSIONAHA.114.03530; PMid:24980667

59. Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB et al. 2013. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 183:1437–1445. https://doi.org/10.1016/j.ajpath.2013.07.021; PMid:24035613 PMCid:PMC3814521

60. Murphy MS, Casselman RC, Tayade C, Smith GN. 2015. Differential expression of plasma microRNA in preeclamptic patients at delivery and 1 year postpartum. Am. J. Obstet. Gynecol. 213:367–369. https://doi.org/10.1016/j.ajog.2015.05.013; PMid:25981845

61. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX et al. 2014. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 63:1276–1284.  https://doi.org/10.1161/HYPERTENSIONAHA.113.02647; PMid:24664294

62. Ishibashi O, Ohkuchi A, Ali MM, Kurashina R, Luo SS, Ishikawa T et al. 2012. Hydroxysteroid (17-beta) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension 59:265–273. https://doi.org/10.1161/HYPERTENSIONAHA.111.180232; PMid:22203747

63. Lauren Anton, Anthony O Olarerin-George, Nadav Schwartz, Sindhu Srinivas, Jamie Bastek, John B. Hogenesch,  Michal A. 2013. miR-210 Inhibits Trophoblast Invasion and Is a Serum Biomarker for Preeclampsia. Elovitz The American Journal of Pathology. 183(5):1437-1445.

64. L’Abee C., Vrieze I, Kluck T, Erwich JJHM, Stolk RP, Sauer PJJ. 2011. Parental factors affecting the weights of the placenta and the offspring. J Perinat Med. 39:27-34. https://doi.org/10.1515/jpm.2010.119; PMid:20954852

65. Wallace JM, Horgan GW, Bhattacharya S. 2012. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta 33:611-618. https://doi.org/10.1016/j.placenta.2012.05.006; PMid:22695104

66. Prabhjot Kaur, Subhash Kaushal, Kuljit Singh and Ashish Sharma. 2013. Placental weight, birth weight and fetal outcome in preeclampsia and normotensive pregnancies. International Journal of Plant, Animal and Environmental Sciences 3:31-34.

67. Quinn MJ. 2014. Preeclampsia: 2 placental phenotypes, 1 etiology? American Journal of Obstetrics & Gynecology 211(3):313-314. https://doi.org/10.1016/j.ajog.2014.04.029; PMid:24791733

68. Johanne Dypvik, Sandra Larsen, Camilla Haavaldsen, Anne M. Jukic, Lars J. Vatten, Anne Eskild. 2017. Placental weight in the first pregnancy and risk for preeclampsia in the second pregnancy: A population-based study of 186 859 women. European Journal of Obstetrics & Gynecology and Reproductive Biology 214:184–189. https://doi.org/10.1016/j.ejogrb.2017.05.010; PMid:28551527 PMCid:PMC5538889

69. Proctor LK, Fitzgerald B, Whittle WL, Mokhtari N, Lee E, Machin G, Kingdom JCP, Keating SJ. 2013. Umbilical cord diameter percentile curves and their correlation to birth weight and placental pathology. Placenta 34:62-66. https://doi.org/10.1016/j.placenta.2012.10.015; PMid:23174148

70. Siveska EJ, Jasovic V. 2015. Fetal Growth and Body Proportion during Pre-Eclamptic Pregnancy. Obstet Gynecol Int J. 2(3):00038. https://doi.org/10.15406/ogij.2015.02.00038