• Mitochondrial dysfunction in children with autistic spectrum disorders: review of literature and own data

Mitochondrial dysfunction in children with autistic spectrum disorders: review of literature and own data

SOVREMENNAYA PEDIATRIYA.2017.8(88):111-119; doi 10.15574/SP.2017.88.111

Kyrylova L. H., Miroshnykov O. O., Tkachuk L. I., Yuzva O. O., Silaieva L. Yu., Mihailets L. P., Lenchevskaia L. K.
SI «Institute of Pediatrics, Obstetrics and Gynecology of NAMS of Ukraine», Kyiv, Ukraine

The prevalence of autism spectrum disorders (ASD) has increased markedly in recent decades. The exact etiological and pathogenetic factors are not found today. In this study, the authors would like to draw attention to the malfunctioning of the mitochondria as one of the possible pathogenetic factors in the pathogenesis of ASD.
Objective. To determine the prevalence of mitochondrial dysfunction among children with ASD.
Material and methods. In the study 25 children with ASD and 15 healthy children of the control group aged 1.5–5.5 y.o. (mean age 3.5 y.o.) were examined. There were 18 boys that made up 72% and 7 girls (18%). The serum concentration of lactate and pyruvate was measured in the children.
Results. An increase of fasting lactate concentration was found in 18 (72.0%) children with RAS.. In children of this group, moderate lactic acidosis with the exceeded reference values of serum lactate by 25–50% was mainly observed. The serum lactate increasing within 25% was noted in 2 (8%) children, and higher than 50% level was observed in 7 (16.0%) patients. We also found a decrease of the lactate/pyruvate ratio in 19 (76.0%) children with ASD.
Conclusions. Children with ASD have severe mitochondrial dysfunction, which can be considered as one of the pathogenetic factors of the regressive forms of ASD. Early detection of mitochondrial dysfunction is critical and requires immediate treatment. We offer a screening determination of the serum lactate, pyruvate and their fasting ratio in all children with ASD.
Key words: mitochondrial dysfunction, autistic spectrum disorders, lactate, pyruvate, respiratory chain.


1. Batyisheva T.T., Trepilets V.M., Ahadova L.Ya., Golosnaya G.S. (2015). Sindrom Alpersa-Huttenlohera. Epilepsiya i paroksizmalnyie sostoyaniya. 7(1): 46—55.

2. Parikh S et al. (2009). A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 11(6): 414—30. https://doi.org/10.1007/s11940-009-0046-0; PMid:19891905 PMCid:PMC3561461

3. Hardan AY, Fung LK, Frazier T et al. (2015). A proton spectroscopy study of white matter in children with autism. Prog Neuro Psychopharmacology Biol Psychiatry. 66: 48—53. https://doi.org/10.1016/j.pnpbp.2015.11.005; PMid:26593330 PMCid:PMC4728039

4. Gu F, Chauhan V, Kaur K et al. (2013). Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry. 3: 299. https://doi.org/10.1038/tp.2013.68; PMid:24002085 PMCid:PMC3784762

5. Hardan AY, Minshew NJ, Melhem NM et al. (2008). An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res Neuroimaging. 163: 97—105. https://doi.org/10.1016/j.pscychresns.2007.12.002; PMid:18508243 PMCid:PMC2467447

6. Chauhan A, Gu F, Essa MM et al. (2011). Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem. 117: 209—220. https://doi.org/10.1111/j.1471-4159.2011.07189.x; PMid:21250997 PMCid:PMC4839269

7. Chan DC. (2006). Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell. 125: 1241—1252. https://doi.org/10.1016/j.cell.2006.06.010; PMid:16814712

8. Cohen RD, Iles RA. (1977). Lactic acidosis: some physiological and clinical considerations. Clin Sci Mol Med Nov. 53(5): 405—10.

9. Finsterer J, Mahjoub SZ. (2012). Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opinion on Drug Metabolism & Toxicology. 8(1): 71—9. https://doi.org/10.1517/17425255.2012.644535; PMid:22149023

10. Frye RE. (2009). 15q11.2-13 duplication, mitochondrial dysfunction, and developmental disorders. J. Child Neurol. 24(10): 1316—20. https://doi.org/10.1177/0883073809333531; PMid:19535813 PMCid:PMC2919279

11. Frye RE. (2015). Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav. 47: 147—57. https://doi.org/10.1016/j.yebeh.2014.08.134. Epub 2014 Nov 4.

12. Homo sapiens mitochondrion, complete genome. «Revised Cambridge Reference Sequence (rCRS): accession NC-012920», National Center for Biotechnology Information. Retrieved on 30 January 2016.

13. Lombard J. (1998). Autism: a mitochondrial disorder? Med Hypotheses. 50(6): 497—500. https://doi.org/10.1016/S0306-9877(98)90270-5

14. Manzi B. (2008). Autism and metabolic diseases. J Child Neurol. 23(3): 307—14. https://doi.org/10.1177/0883073807308698; PMid:18079313

15. Tang G, Rios PG, Kuo SH et al. (2009). Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis. 54: 349—361. https://doi.org/10.1016/j.nbd.2013.01.006; PMid:23333625 PMCid:PMC3959772

16. Morava E, van den Heuvel L, Hol F et al. (2006). Mitochondrial disease criteria: diagnostic applications in children. Neurology. 67(10): 1823—6. https://doi.org/10.1212/01.wnl.0000244435.27645.54; PMid:17130416

17. Weissman JR, Kelley RI, Bauman ML et al. (2008). Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS One. 3(11): 3815. https://doi.org/10.1371/journal.pone.0003815; PMid:19043581 PMCid:PMC2584230

18. Haas RH, Parikh S, Falk MJ et al. (2007). Mitochondrial disease: a practical approach for primary care physicians. Pediatrics Dec. 120(6): 1326—33. https://doi.org/10.1016/j.mito.2007.04.005; https://doi.org/10.1016/j.mito.2007.03.008; PMid:17485245

19. Garcia-Cazorla A, Quadros EV, Nascimento A et al. (2008). Mitochondrial diseases associated with cerebral folate deficiency. Neurology. 70(16): 1360—2. https://doi.org/10.1212/01.wnl.0000309223.98616.e4; PMid:18413591

20. Ghezzi D et al. (2005). Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians. European Journal of Human Genetics. 13: 748—752. https://doi.org/10.1038/sj.ejhg.5201425; PMid:15827561

21. Siddiqui M et al. (2016). Mitochondrial Dysfunction in Autism Spectrum Disorders. Autism Open Access. 27: 6(5).

22. Prabakaran S, Swatton JE, Ryan MM et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry: 684—697, 643. PubMed. https://doi.org/10.1038/sj.mp.4001532; https://doi.org/10.1038/sj.mp.4001511

23. Haas RH, Parikh S, Falk MJ et al. (2008). Mitochondrial Medicine Society's Committee on Diagnosis. Review The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 94(1): 16—37. https://doi.org/10.1016/j.ymgme.2007.11.018; PMid:18243024 PMCid:PMC2810849

24. Konradi C, Eaton M, MacDonald ML et al. (2004). Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 61: 300—308. PubMed. https://doi.org/10.1001/archpsyc.61.3.300; PMid:14993118

25. Nissenkorn A, Zeharia A, Lev D et al. (1999). Multiple presentation of mitochondrial disorders. Arch Dis Child. 81(3): 209—14. https://doi.org/10.1136/adc.81.3.209; PMid:10451392 PMCid:PMC1718054

26. Naviaux RK. (2004). Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion. 4: 351—361. https://doi.org/10.1016/j.mito.2004.07.002; PMid:16120397

27. Naviaux RK. (2003). The Spectrum of Mitochondrial Disease, in Mitochondrial and Metabolic Disorders: A Primary Care Physician's Guide. 2nd ed.

28. Neurology of the Infant. (2009). Francesco Guzzetta (Ed.), John Libbey Eurotext. Montrouge: 162.

29. Ohta S, Ohsawa I. (2006). Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis. 9: 155—166. https://doi.org/10.3233/JAD-2006-9208; PMid:16873963

30. Palmieri L, Persico AM. (2010). Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim Biophys Acta. 1797: 1130—1137. https://doi.org/10.1016/j.bbabio.2010.04.018; PMid:20441769

31. Elliot H, Samuels D et al. (2008). Pathogenic Mitochondrial DNA Mutations Are Common in the General Population. The American Journal of Human Genetics. 83(2): 254—260. https://doi.org/10.1016/j.ajhg.2008.07.004; PMid:18674747 PMCid:PMC2495064

32. Andrews R et al. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 23(2): 147. https://doi.org/10.1038/13779; PMid:10508508

33. Kelley RI. Evaluation and Treatment of Patients with Autism and Mitochondrial Disease. http://mitomedical.com.

34. Rossignol DA. (2012). Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 17(3): 290—314. https://doi.org/10.1038/mp.2010.136; PMid:21263444 PMCid:PMC3285768

35. Smigrodzki RM, Khan SM. (2005). Mitochondrial Microheteroplasmy and a Theory of Aging and Age_Related Disease. Rejuvenation Research. 8(3): 172—198. https://doi.org/10.1089/rej.2005.8.172; PMid:16144471

36. Trushina E, McMurray CT. (2007). Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 145: 1233—1248. PubMed. https://doi.org/10.1016/j.neuroscience.2006.10.056; PMid:17303344

37. Silva MF, Aires CC, Luis PB et al. (2008). Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis. 31: 205—216. https://doi.org/10.1007/s10545-008-0841-x; PMid:18392741

38. Zeviani M, Di Donato S. (2004). Mitochondrial disorders. Brain. 127(10): 2153—2172. https://doi.org/10.1093/brain/awh259; PMid:15358637