• Leukemoid reactions and chronic chronic myeloproliferative diseases in children: similarity and differences
Come back

Leukemoid reactions and chronic chronic myeloproliferative diseases in children: similarity and differences

Modern pediatrics. Ukraine. 2019.5(101):9-30; doi 10.15574/SP.2019.101.9
O.I. Dorosh, P.J. Dudash, S. Cesaro, O.A. Petronchak, R.V. Gulеi, O.V. Lyha, I.P. Melko, L.K. Drobchenko, T.V. Burak, O.M. Ocheretna, A.M. Mykh, L.P. Seredych, B.S. Romanyshyn, M.B. Zakharus

Сommunal noncommercial enterprise of Lviv regional council «Western Ukrainian Specialized Children's Medical Centre», Lviv, Ukraine
Municipal institution of Lviv regional council «Lviv regional pathoanatomical bureau», Lviv, Ukraine
Center for Pediatric Onco0Hematology of the University Hospital of Verona, Italy
Private limited company «Western Histology Laboratory», Lviv, Ukraine
Lviv National Medical University named after Danylo Halytskyy., Lviv, Ukraine
Center for Medical Innovations «NOVO», Lviv, Ukraine
Medical Center of St. Paraskeva, Lviv, Ukraine
Private Medical Center «Minipoliklinika», Lviv, Ukraine
For citation: Dorosh OI, Dudash PJ, Cesaro S, Petronchak OA et al. (2019). Leukemoid reactions and chronic chronic myeloproliferative diseases in children: similarity and differences. Modern Pediatrics.Ukraine. 5(101): 9-30. doi 10.15574/SP.2019.101.9
Article received: Apr 07, 2019. Accepted for publication: Aug 04, 2019.

The publication presents three clinical cases with a similar debut of disease and changes in the hemogram in children under the age of 1. Patients were noted with: pale skin and pale visible mucous membranes, hepatolyenial syndrome, bilateral pneumonia, poor weight gain, anemia, changes in platelet count, increased value of lactate dehydrogenase (LDH) in serum, hyperleucocytosis and hyperplasia of granulocyte cells. Two patients had blasts, but no acute leukemia criteria in myelogram. These patients were diagnosed with leukemoid reaction (LR) for bilateral pneumonia, chronic myeloproliferative disease (СMPD)/chronic myelomonocytic leukemia (CMМL) with eosinophilia and with t(1; 5)(q21; q32) and rearrangement of the TPM3-PDGFRβ gene and juvenile myelomonocytic leukemia (JMML) with the mutation of the PTPNll gene (c.181G>A). Much attention is paid to pathological changes in the general blood test, histological and genetic aspects, clinical course of disease, differential diagnosis between the LR and the corresponding variant of hemoblastosis as well as to review of the literature.
In the first clinical case hemogram showed hyperleukocytosis of more than 170×109/l with rejuvenation in the leukocyte count before blasts, anemia, hypertrombocytosis of more than 1300×109/l, hepatolienal syndrome, which gave reasons to suspect СMPD, in particular JMML or CMML. With LR anemic syndrome is extremely rare. A child with LR anemia had hypochromic iron deficiency. In patients with CMPD/CMML and JMML iron deficiency was not detected, but there was a significant increase in serum vitamin B12 levels. Hyperosinophilia was determined in the second and third clinical cases. In addition to that lymphadenopathy was diagnosed. The patient with JMML was also diagnosed with hyperplasia of the lymph nodes in the mediastinum. A girl with CMPD/CMML had a specific skin lesion, which can be found in a third of patients with JMML. During histological examination of the lymph node and skin tissue similar changes were revealed in these individuals. Biopsy material was presented by monocytes cells with a large number of immature and mature eosinophils. CMPD/CMML associated with eosinophilia and JMML are extremely rare diseases in children. They are clinically similar and show similar lab test results. In these children the diagnosis was based on a combination of clinical, histological, immunohistochemical, molecular genetic methods. Therefore each doctor must be especially attentive to patients with hepatosplenomegaly, polylymphadenopathy, underweightness, changes in hemogram, such as eosinophilia, presence of intermediate forms of granulocytes, blastemia, monocytosis, normoblastosis with an altered number of platelets from hypertrombocytosis to moderate thrombocytopenia, increased LDH. The child should be referred for a consultation with a hematologist to verify the diagnosis using appropriate diagnostic criteria, including molecular. Final verification is possible only with the help of molecular genetic tests. Identification of the molecular genetic mutations allows to diagnose correctly and to choose the right treatment plan. Treatment with imatinib in children with t (1; 5) (q21; q32) and the rearrangement of the TPM3-PDGFRβ gene gives a chance of recovery with hematological remission. Imatinib should be recommended as the first treatment for these patients. The research was carried out in accordance with the principles of the Helsinki Declaration.
The study protocol was approved by the Local Ethics Committee (LEC) of all participating institution. The informed consent of the patient was obtained for conducting the studies.
No conflict of interest was declared by the authors.
Key words: leukemoid reaction, chronic myeloproliferative diseases, juvenile myelomonocytic leukemia, children.


1. Vorobyov АI. (2003). Hematology manual. In 3 vol. (3th ed.). Vol. 2. Moscow: Newdiamed: 277.

2. Maschan MA, Khachatryan LA, Skvortsova YuV et al. (2011). Hematopoietic stem cell transplantation in juvenile myelomonocytic leukemia: analyse one centre experience and literature review. Oncohematology. 1: 45–55.

3. Meshcheryakov АА. (2009). Leukemoid reaction in solid tumors: a case report and review of literature. Klinicheskaya onkogematologiya. 2: 56–58.

4. Mikhaylova NB, Afanasyev BV. (2007). Hypereosinophilic syndrome. Clinical Oncohematology. МА. Volkova (Editor). Moscow: Meditsina: 631–644.

5. Mikhaylova NB, Afanasyev BV. (2009). Сlonal eosinophilia. Klinicheskaya onkogematologiya. 2: 1–10.

6. Novikova IА. (2013). Clinical and laboratory hematology. IA Novikova, SA Hoduleva (Eds.) Minsk: Vyisheyshaya shkola: 446.

7. Okorokov АN. (2001). Diagnosis of internal diseases. Vol.4. Мoscow: Meditsinskaya literatura: 502.

8. Sokolova NА, Savina MI. (2011). Changes in presentation of the pathogenesis of Ph-negative myeloproliferative diseases. Molodoy uchenyiy. 5(2): 216–219.

9. Khachatryan LA, Maschan MA, Samochatova EV et al. (2008). Differentiation therapy using 13-cis-retinoic acid and low doses of cytosine-arabinoside in children with juvenile myelomonocytic leukemia. Oncohematology. 1–2: 34–38.

10. Abraham S, Salama M, Hancock J, Jacobsen J, Fluchel M. (2012). Congenital and childhood myeloproliferative disorders with eosinophilia responsive to imatinib. Pediatr Blood Cancer. 59(5): 928–929. https://doi.org/10.1002/pbc.24148; PMid:22488677

11. Abramson N, Melton B. (2000). Leukocytosis: basics of clinical assessment. Am Fam Physician. 62: 2053–2060.

12. Andreasen C, Powell DA, Carbonetti NH. (2009). Pertussis toxin stimulates IL/17 production in response to Bordetella pertussis infection in mice. PLoS One. 4: e7079. https://doi.org/10.1371/journal.pone.0007079; PMid:19759900 PMCid:PMC2738961

13. Arber DA, Orazi A, Hasserjian R et al. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127(20): 2391–2405. https://doi.org/10.1182/blood-2016-03-643544; PMid:27069254

14. Arefi M, Garcia JL, Penarrubia MJ, Queizan JA, Hermosin L et al. (2012). Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol. 89(1): 37–41. https://doi.org/10.1111/j.1600-0609.2012.01799.x; PMid:22587685

15. Babushok DV, Bessler M. (2015). Genetic predisposition syndromes: when should they be considered in the work-up of MDS? Best Pract Res Clin Haematol. 28(1): 55–68. https://doi.org/10.1016/j.beha.2014.11.004; PMid:25659730 PMCid:PMC4323616

16. Bain BJ, Gilliland DG, Horny H-P et al. (2008). Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1. In S Swerdlow, NL Harris, H Stein, ES Jaffe, J Theile, JW. Vardiman (Eds.), Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. World Health Organization Classification of Tumours. Lyon, France: IARC Press: 68–73.

17. Baynes RD, Flax H, Bothwell TH, McDonald TP, Atkinson TP, Chetty N et al. (1987). Reactive thrombocytosis in pulmonary tuberculosis. J Clin Pathol. 40: 676–679. https://doi.org/10.1136/jcp.40.6.676; PMid:3611396 PMCid:PMC1141061

18. Bergstraesser E, Hasle H, Rogge T et al. (2007). Non/hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer. 49(5): 629–633. https://doi.org/10.1002/pbc.21038; PMid:16991133

19. Castleberry R, Emanuel P, Zuckerman K et al. (1994). A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med. 331(25): 1680–1684. https://doi.org/10.1056/NEJM199412223312503; PMid:7605422

20. Chakraborty S, Keenportz B, Woodward S, Anderson J, Colan D. (2015). Paraneoplastic leukemoid reaction in solid tumors. Am J Clin Oncol. 38(3): 326–330. https://doi.org/10.1097/COC.0b013e3182a530dd; PMid:24145395

21. Chen J, DeAngelo DJ, Kutok JL, Williams IR, Lee BH, Wadleigh M et al. (2004). PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci. USA. 101(40): 14479–14484. https://doi.org/10.1073/pnas.0404438101; PMid:15448205 PMCid:PMC521956

22. Cogan E, Roufosse F. (2012). Clinical management of the hypereosinophilic syndromes. Expert Rev Hematol. 5(3): 275–289. https://doi.org/10.1586/ehm.12.14; PMid:22780208

23. David M, Cross NC, Burgstaller S, Chase A et al. (2007). Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood. 109(1): 61–64. https://doi.org/10.1182/blood-2006-05-024828; PMid:16960151

24. Desai N, Morkhandikar S, Sahay R, Jijina F, Patil P. (2014). Myeloproliferative hypereosinophilic syndrome presenting as cardiac failure and response to imatinib. Am J Ther. 21(2): e35/e37. https://doi.org/10.1097/MJT.0b013e3182491df1; PMid:24603276

25. Doisaki S, Muramatsu H, Shimada A, Takahashi Y et al. (2012). Somatic mosaicism for oncogenic NRAS mutations in juvenile myelomonocytic leukemia. Blood. 120(7): 1485–1488. https://doi.org/10.1182/blood-2012-02-406090; PMid:22753870

26. Erben P, Gosenca D, Muller MC, Reinhard J, Score J, del Valle F et al. (2010). Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica. 95(5): 738–744. https://doi.org/10.3324/haematol.2009.016345; PMid:20107158 PMCid:PMC2864379

27. Golub TR, Barker GF, Lovett M, Gilliland DG. (1994). Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 77(2): 307–316. https://doi.org/10.1016/0092-8674(94)90322-0

28. Gotlib J. (2014). World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. Am J Hematol. 89(3): 325–337. https://doi.org/10.1002/ajh.23664; PMid:24577808

29. Gotlib J, Cools J. (2008). Five years since the discovery of FIP1L1-PDFRA: what we have learned about the fusion and other moleculary defined eosinophilias. Leukemia. 22: 41–52. https://doi.org/10.1038/leu.2008.287; PMid:18843283

30. Gustafsson B, Hellebostad M, Ifversen M, Sander B, Hasle H. (2011). Acute respiratory failure in 3 children with juvenile myelomonocytic leukemia. J Pediatr Hematol Oncol. 33(8): e363–e367. https://doi.org/10.1097/MPH.0b013e3182055e44; PMid:21572349

31. Hasle H. (2016). Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program. 2016(1): 598–604. https://doi.org/10.1182/asheducation-2016.1.598; PMid:27913534 PMCid:PMC6142519

32. Helbig G, Kyrcz-Krzemien S. (2011). Diagnostic and therapeutic management in patients with hypereosinophilic syndromes. Pol Arch Med Wewn. 121(1–2): 44–52. https://doi.org/10.20452/pamw.1021; PMid:21346698

33. Helbig G, Moskwa A, Hus M et al. (2010). Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript — results of Polish multicentre study. Hematol Oncol. 28(2): 93–97. https://doi.org/10.1002/hon.919; PMid:19728396

34. Helbig G, Stella-Holowiecka B, Majewski M, Calbecka M et al. (2008). A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol. 141(2): 200–204. https://doi.org/10.1111/j.1365-2141.2008.07033.x; PMid:18307562

35. Hoofien A, Yarden–Bilavski H, Ashkenazi S, Chodick G, Livni G. (2018). Leukemoid reaction in the pediatric population: etiologies, outcome, and implications. Eur J Pediatr. 177(7): 1029—1036. https://doi.org/10.1007/s00431-018-3155-5; PMid:29696475

36. Hungund BR, Sangolli SS, Bannur HB, Malur PR et al. (2012). Blood and bone marrow findings in tuberculosis in adults – A cross sectional study. Al Am een J Med Sci. 5(4): 362–366.

37. Ionescu MA, Wang L, Janin A. (2009). Hypereosinophilic syndrome and proliferative diseases. Acta Dermatovenerol Croat. 17(4): 323–330.

38. Klion AD, Noel P, Akin C et al. (2003). Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood. 101(12): 4660–4666. https://doi.org/10.1182/blood-2003-01-0006; PMid:12676775

39. Kubic VL, Kubic PT, Brunning RD. (2014). The morphologic and immunophenotypic assessment of the lymphocytosis accompanying Bordetella pertussis infection. Am J Clin Pathol. 95: 809–815. https://doi.org/10.1093/ajcp/95.6.809; PMid:2042590

40. Kuperman A, Hoffmann Y, Glikman D et al. (2014). Severe pertussis and hyperleukocytosis: is it time to change for exchange? Transfusion. 54: 1630–1633. https://doi.org/10.1111/trf.12519; PMid:24330004

41. Li Z, Yang R, Zhao J, Yuan R, Lu Q, Li Q, Tse W. (2011). Molecular diagnosis and targeted therapy of a pediatric chronic eosinophilic leukemia patient carrying TPM3-PDGFRB fusion. Pediatr Blood Cancer. 56(3): 463–466. https://doi.org/10.1002/pbc.22800; PMid:21072821

42. Locatelli F, Nollke P, Zecca M et al.; European Working Group on Childhood MDS; European Blood and Marrow Transplantation Group. (2005). Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS-EBMT trial. Blood. 105(1): 410–419. https://doi.org/10.1182/blood-2004-05-1944; PMid:15353481

43. Locatelli F, Niemeyer CM. (2015). How I treat juvenile myelomonocytic leukemia. Blood. 125(7): 1083–1090. https://doi.org/10.1182/blood-2014-08-550483; PMid:25564399

44. Loh ML. (2011). Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol. 152(6): 677–687. https://doi.org/10.1111/j.1365-2141.2010.08525.x; PMid:21623760

45. Lombard EH, Mansvelt EP. (1993). Haematological changes associated with miliary tuberculosis of the bone marrow. Tuber Lung Dis. 74(2): 131–135. https://doi.org/10.1016/0962-8479(93)90041-U

46. Ma X, Li G, Cai Z, Sun W, Liu J, Zhang F. (2012). Leukemoid reaction in malignant bone tumor patients — a retrospective, single-institution study. Eur Rev Med Pharmacol Sci. 16(14): 1895–1899.

47. Maccaferri M, Pierini V, Di Giacomo D, Zucchini P, Forghieri F et al. (2017). The importance of cytogenetic and molecular analyses in eosinophilia-associated myeloproliferative neoplasms: an unusual case with normal karyotype and TNIP1/PDGFRB rearrangement and overview of PDGFRB partner genes. Leuk Lymphoma. 58(2): 489–493. https://doi.org/10.1080/10428194.2016.1197396; PMid:27337990

48. Marinella MA, Burdette SD, Bedimo R, Markert RJ. (2004). Leukemoid reactions complicating colitis due to Clostridium difficile. South Med J. 97(10): 959—963. https://doi.org/10.1097/01.SMJ.0000054537.20978.D4; PMid:15558922

49. Metzgeroth G, Schwaab J, Gosenca D, Fabarius A, Haferlach C, Hochhaus A, Cross NC, Hofmann WK, Reiter A. (2013). Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid-lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia. 27(11): 2254–2256. https://doi.org/10.1038/leu.2013.129; PMid:23615556

50. Murakami N, Okuno Y, Yoshida K, Shiraishi Y, Nagae G et al. (2018). Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 131(14): 1576—1586. https://doi.org/10.1182/blood-2017-07-798157; PMid:29437595

51. Naumann N, Schwaab J, Metzgeroth G, Jawhar M, Haferlach C et al. (2015). Fusion of PDGFRB to MPRIP, CPSF6, and GOLGB1 in three patients with eosinophilia-associated myeloproliferative neoplasms. Genes Chromosomes Cancer. 54(12): 762–770. https://doi.org/10.1002/gcc.22287; PMid:26355392

52. Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A et al. (1997). Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 89(10): 3534—3543.

53. Niemeyer CM, Kang MW, Shin DH et al. (2010). Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 42(9): 794—800.

54. Niemeyer CM. (2018). JMML genomics and decisions. Hematology Am Soc Hematol Educ Program. 2018(1): 307—312. https://doi.org/10.1182/asheducation-2018.1.307; PMid:30504325

55. Noel P, Mesa RA. (2013). Eosinophilic myeloid neoplasms. Curr Opin Hematol. 20(2): 157—162. https://doi.org/10.1097/MOH.0b013e32835d81bf; PMid:23385615

56. Reiter A, Gotlib J. (2017). Myeloid neoplasms with eosinophilia. Blood. 129(6): 704—714. https://doi.org/10.1182/blood-2016-10-695973; PMid:28028030

57. Romano MJ, Weber MD, Weisse ME et al. (2004). Pertussis pneumonia, hypoxemia, hyperleukocytosis, and pulmonary hypertension: improvement in oxygenation after a double volume exchange transfusion. Pediatrics. 114:e264—e266. https://doi.org/10.1542/peds.114.2.e264; PMid:15286267

58. Sakashita K. (2016). Juvenile myelomonocytic leukemia (JMML): recent advances in molecular pathogenesis and treatment. Rinsho Ketsueki. 57(2): 137—146.

59. Savage N, George TI, Gotlib J. (2013). Myeloid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, and FGFR1: a review. Int J Lab Hematol. 35(5): 491—500. https://doi.org/10.1111/ijlh.12057; PMid:23489324

60. Singh KJ, Ahulwalia G. Sharma SK, Saxena R, Chaudhary VP, Anant M. (2001). Significance of hematological manifestations in patients with tuberculosis. J Asso Physicians Ind. 49: 788—794.

61. Swerdlow SH, Campo E, Harris NL et al. (2008). WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon, France: IARC Press: 439.

62. Valent P, Gleich GJ, Reiter A et al. (2012). Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol. 5(2): 157—176. https://doi.org/10.1586/ehm.11.81; PMid:22475285 PMCid:PMC3625626

63. Wang J, YinY, Wang X, PeiH et al. (2015). Ratio of monocytes to lymphocytes in peripheral blood in patients diagnosed with active tuberculosis. Braz J Infect Dis. 19(2): 125—131. https://doi.org/10.1016/j.bjid.2014.10.008; PMid:25529365

64. Yaranal PJ, Umashankar T, Harish SG. (2013). Hematological Profile in Pulmonary Tuberculosis. IJHRS. 2(1): 50—55.

65. Zanardo V, Savio V, Giacomin C, Rinaldi A, Marzari F, Chiarelli S. (2002). Relationship between neonatal leukemoid reaction and bronchopulmonary dysplasia in low-birth-weight infants: a cross-sectional study. Am J Perinatol. 19(7): 379—386. https://doi.org/10.1055/s-2002-35612; PMid:12442227

66. Zhang XY, Liu TF, Li CW, Li QH, Zhu XF. (2018). Pediatric myeloid neoplasms associated with eosinophilia and plateletderived growth factor receptor beta gene rearrangement: a case report and literature review. Zhonghua Er Ke Za Zhi. 56(1): 34—38.