• Justification principles of pathogenetic treatment of patients with fibrocystic disease (mastopathy) 
To content

Justification principles of pathogenetic treatment of patients with fibrocystic disease (mastopathy) 

HEALTH OF WOMAN.2015.7(103):147–151 

Justification principles of pathogenetic treatment of patients with fibrocystic disease (mastopathy) 

Shurpyak S. O., Pyrohova V. I.

Lviv national medical University named Danylo Galitsky 

Breast dysplasia (fibrocystic disease) is a heterogeneous group of diseases characterized by a wide spectrum of proliferative and regressive changes of the breast tissue with impaired ratio of the epithelial and connective tissue components.

Today formulated the concept of hyperplastic syndrome in gynecology, according to which the hormonal imbalance in the reproductive system of equally likely to provoke an unwanted proliferation in all organs capable of expressing the relevant receptors. Metabolism of estrogens – the main cause of all hyperprolypherative diseases of reproductive system. Aggressive metabolite 16a-ONE1 can covalently and irreversibly bind to the endoplasmic reticulum loci, along with the binding to nuclear estrogens receptor, providing stimulation for their long days, 4 ONE1 as 16a-ONE1, shows estrogenic activity, while its mutagenic effect is explained by induction of the formation of free superoxide radicals to damage the DNA of cells. Estrogens stimulation of gene expression of estrogens, which include vascular endothelial growth factor (VEGF), cyclin-dependent kinase (CDK), insulin-like growth factor (IGF) and others, increases the sensitivity of cells to proliferate breast.

Increased production of these metabolites is seen as a manifestation of quality changes and steroidogenesis factor in the development of malignant tumors. Search drugs for the treatment of benign breast dysplasia led to the development of tools that reduce the proliferative activity of estrogens-dependent cells and have anti-tumor activity.

The drug Epigalin Brest, active components are 3.3-diindolilmetan (200 mg), green tea extract (82 mg, containing 45 mg of epigallocatechin-3-gallate) and extract Vitex agnus (100 mg) blocking hormone-dependent proliferation by normalizing metabolism by reducing estrogens production «aggressive» 16a-ONE1. The components of the drug Epigalin Brest complement each other and exhibit antiproliferative effect through regulation of the cell cycle division, cell proliferation, apoptosis, oncogenesis, transcription, cell signal transduction and restore hormonal balance in organs and tissues of the reproductive system. 

Key words: Epigalin Brest, indole-3-carbinol, 3,3’diindolilmetan, epigallocatechin-3 gallate, dishormonal breast disease, fibrocystic disease. 


1. Андреева ЕН, Леднева ЕВ. 2002. Основные аспекты этиологии, патогенеза фиброзно-кистозной болезни молочной железы. Акушерство и гинекология 6:7–9.

2. Андреева ЕН, Хамошина МБ, Руднева ОД. 2012. Пролактин и молочные железы: норма и патология. Гинекология 1:12–16.

3. Бредберг А. 2011. Рак: полигенное заболевание или множество мутаций? Количественная точка зрения. Креативная хирургия и онкология 4:4–10.

4. Киселев ВИ, Сидорова ИС, Унанян АЛ, Муйжнек ЕЛ. 2010. Гиперпластические процессы органов женской репродуктивной системы: теория и практика. М, Медпрактика-М:468.

5. Радзинский ВЕ и др. 2012. Молочные железы и гинекологические болезни: от общности патогенетических воззрений к практическим решениям. М, Редакция журнала Status Praesens:16.

6. Прилепская ВН, Тагиева ТТ. 2008. Фиброзно-кистозная болезнь молочных желёз: возможности негормональной терапии. Медлайн-Экспресс 5:10–17.

7. Смоланка ИИ, Досенко ИВ. 2007. Дисгормональные гиперплазии молочной железы: этиология, клинические формы, принципы терапии. Медицинские аспекты здоровья женщины 3(6):42–43.

8. Кит ОИ, Франциянц ЕМ, Бандовкина ВА и др. 2013. Содержание метаболитов эстрона в периферических жидкостях и тканях у женщин, больных раком молочной железы, разного возраста и репродуктивного статуса. Фундаментальные исследования 7:319–323.

9. Стариков ВИ. 2002. Фиброзно-кистозная мастопатия. Междунар. мед. журн. 1:144–148.

10. Тагиева ТТ. 2003. Фиброзно-кистозная мастопатія. Гинекология 7;3:141–148.

11. Вуттке В, Ярри Г, Зайдлова-Вуттке Д и др. 2009. Терапевтические возможности экстрактов из авраамова дерева (Vitex Agnus castus) в гинекологической практике. Пробл. репродукц. 4:53–58.

12. Hong C, Kim HA, Firestone GL et al. 2002. 3,3’Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305. http://dx.doi.org/10.1093/carcin/23.8.1297; PMid:12151347

13. Reed GA, Peterson KS, Smith HJ et al. 2005, Aug. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev. 14(8). http://dx.doi.org/10.1158/1055-9965.EPI-05-0121

14. Nakagawa T, Yokozawa T, Sano M et al. 2004. Activity of Epigallocatechin-3-gallate against oxidative stress in rats with adenineinduced renal failure. J Agric Food Chem. 52 (7):2103–2107. http://dx.doi.org/10.1021/jf030258j; PMid:15053559

15. Zhang G, Wang Y, Zhang Y et al. 2012. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr Mol Med. 12(2):163–176. http://dx.doi.org/10.2174/156652412798889063; PMid:22280355 PMCid:PMC3305796

16. Yuan F, Chen DZ, Liu K et al. 1999. Antiestrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 19:1673–1680. PMid:10470100

17. Boumber Y, Issa JP. 2011. Epigenetics in cancer: what’s the future? Oncology 25:220–226, 228. PMid:21548464

18. Butt MS, Sulton MT. 2009. Green tea: nature`s defense against malignancies. Crit.Rev.Foods and Nutr. 49:463–473. http://dx.doi.org/10.1080/10408390802145310; PMid:19399671

19. Nakazato T, Ito K, Miyakawa Y et al. 2005. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemia cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica 90:2290–2295.

20. Wuttke W, Jarry H, Christoffel V et al. 2003. Chaste tree (Vitex agnuscastus) — pharmacology and clinical indications. Phytomedicine 10:348–357. http://dx.doi.org/10.1078/094471103322004866; PMid:12809367

21. Daniele C, Coon JT. 2005. Vitex agnus castus: A systematic review of adverse events. Drug Safety 28(4):331. http://dx.doi.org/10.2165/00002018-200528040-00004

22. Wong GY, Bradlow L, Sepkovic D et al. 1997. Doseranging study of indole-3-carbinol for breast cancer prevention. J. Cell Biochem. 28–29:111–116. http://dx.doi.org/10.1002/(SICI)1097-4644(1997)28/29+<111::AID-JCB12>3.3.CO;2-Nhttp://dx.doi.org/10.1002/(SICI)1097-4644(1997)28/29+<111::AID-JCB12>3.0.CO;2-K

23. Wheeler DS, Catravas JD, Odoms K et al. 2004. Epigallocatechin-3-gallate, a green tea derived polyphenol, inhibits IL-1beta dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J. Nutr. 134(5):1039–1044. PMid:15113942

24. Firestone GL, Bjeldanes LF. 2003. Indole-3-carbinol and З-З-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp 1 transcription factor interactions. J. Nutr. 133:2448S–2455S. PMid:12840223

25. Hong C, Firestone GL, Bjeldanes LF. 2002. Bcl2 familymediated apoptotic effects of 3,3diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol. 63:1085–1097. http://dx.doi.org/10.1016/S0006-2952(02)00856-0

26. Fantini M, Benvenuto M, Masuelli L et al. 2015. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci. 16(5):9236–9282. http://dx.doi.org/10.3390/ijms16059236; PMid:25918934 PMCid:PMC4463587

27. Jarry H, Leonhardt S, Gorkow C, Wuttke W. 1994. In vitro prolactin but not LH and FSH release is inhibited by compounds in extracts of Agnus castus: direct evidence for a dopaminergic principle by the dopamine receptor assay. Exp. Clin. Endocrinol. 102:448–454. http://dx.doi.org/10.1055/s-0029-1211317; PMid:7890021

28. Chen DZ, Qi M, Auborn KJ et al. 2001. Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16_transgenic preneoplastic cervical epithelium. J. Nutr. 131:3294–3302. PMid:11739883

29. Cover CM, Hsieh SJ, Tran SH et al. 1998. Indole-3-carbinol inhibits the expression of cyclindependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J. Biol. Chem. 273:3838–3847. http://dx.doi.org/10.1074/jbc.273.7.3838; PMid:9461564

30. Chatterji U, Riby JE, Taniguchi Т et al. 2004. Indole-3-carbinol stimulates transcription of the interferon gamma receptor 1 gene and augments interferon responsiveness in human breast cancer cells. Carcinogeneses 25:1119–1128. http://dx.doi.org/10.1093/carcin/bgh121; PMid:14988219

31. Meng Q, Goldberg ID, Rosen EM et al. 2000. Inhibitory effects of indole3carbinol on invasion and migration in human breast cancer cells. Breast Cancer Res. Treat. 63:147–152. http://dx.doi.org/10.1023/A:1006495824158; PMid:11097090

32. Jarry H. 2006. In vitro assays for bioactivity-guided isolation of endocrine active compounds in vitex agnus castus. Maturitas 55S:26–36. http://dx.doi.org/10.1016/j.maturitas.2006.06.014

33. Kulendran M, Salhab M, Mokbel K. 2009. Oestrogensunthesising enzymes and breast cancer. Anticancer res.:1095–1109. PMid:19414351

34. Liao S, Hiipakka RA. 1995. Selective inhibition of steroid 5a-reductase isozymes by tea epicatechin3gallate and epigallocatechin3gallate. Biochem Biophys Res Commun. 214:833–838. http://dx.doi.org/10.1006/bbrc.1995.2362; PMid:7575552

35. Mooberry SL. 2003. Mechanism of action of 2-methoxyestradiol: new developments. Drug Resist. Updat. 6:355–361. http://dx.doi.org/10.1016/j.drup.2003.10.001; PMid:14744499

36. Ashok BT, Chen YG, Liu X et al. 2002. Multiple molecular targets of indole-3carbinol, a chemopreventive anti-estrogen in breast cancer. Eur. J. Cancer. Prev. 11:86–93.

37. Murillo G, Mehta RG. 2001. Cruciferous vegetables and cancer prevention. Nutr. Cancer. 41:17–28. http://dx.doi.org/10.1080/01635581.2001.9680607http://dx.doi.org/10.1207/S15327914NC41-1&2_2

38. Rahman KM, Aranha O, Sarkar F. 2003. Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutr. Cancer. 45:101–112. http://dx.doi.org/10.1207/S15327914NC4501_12; PMid:12791510

39. Reed MJ, Purohit A. 2002. Regulation of estrogen synthesis in postmenopausal women. Steroids 67;12:979–983. http://dx.doi.org/10.1016/S0039-128X(02)00046-6

40. Meng Q, Qi M, Chen DZ et al. 2000. Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with upregulation of BRCA1 and Ecadherin/catenin complexes. J. Mol. Med. 78:155–165. http://dx.doi.org/10.1007/s001090000088; PMid:10868478

41. Fang MZ, Wang Y, Ai N et al. 2003. Tea polyphenol epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylationsilenced genes in cancer cell lines. Cancer Res. 15;63(22):7563–7570.

42. Kondo T, Ohta T, Igura K, Hara Y, Kaji K. 2002. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Int J Cancer 180(2):139–144. http://dx.doi.org/10.1016/s0304-3835(02)00007-1

43. Thangapazham RL, Passi N, Maheshwari RK. 2007. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol Ther. 6(12):1938–1943. http://dx.doi.org/10.4161/cbt.6.12.4974; PMid:18059161

44. Halaska M, Raus K, Beles P et al. 1998. Treatment of cyclical mastodynia using an extract of Vitex agnus castus: results of a doubleblind comparison with a placebo. Ceska Gynekol. 63:388–392. PMid:9818496

45. Zhang X, Giganti M. 2003. Effects of treatment of rats with indole-3-carbinol on apoptosis in the mammary gland and mammary adenocarcinomas. Anticancer Res.