• Endothelial dysfunction and functional status of intestinal mucosal barrier in asphyxiated low birth weight infants 
en To content Full text of article

Endothelial dysfunction and functional status of intestinal mucosal barrier in asphyxiated low birth weight infants 

SOVREMENNAYA PEDIATRIYA.2016.2(74):56-61; doi 10.15574/SP.2016.74.56 

Endothelial dysfunction and functional status of intestinal mucosal barrier in asphyxiated low birth weight infants 

Huseynova S. A., Panakhova N. F., Orujova P. A., Hajiyeva N. N., Adilova A. I.

Azerbaijan Medical University, Neonatology Department, Baku, Azerbaijan 

Aim of study. The main prpose of present study was to determine the effect of endothelial dysfunction to the levels of markers of functional state of digestive system in infants with perinatal hypoxia. 

Materials and methods. The neuronal dysfunction was detected basing on the levels of NSE and NR2 antibodies. The functional state of gastrointestinal tract was estimated by IFABP, sLFABP, MUC-2, ITF, LBP. As the markers of endothelial dysfunction it was detected endotelin-1 and NO. The concentrations of markers were determined in peripheral blood of 66 preterm newborns exposure intrauterine hypoxia with 32–36 weeks of gestational age, which were classified as asphyxiated (1st group, n=30), non asphyxiated (2nd group, n=36) infants. Control group consisted of 22 healthy preterm babies. 

Results. It was not detected significant difference of NSE and NR2 antibodies levels between 1st and 2nd groups. The endothelin-1 concentrations significantly decreased in asphyxiated group in the background of high NO levels. The elevated level of IFABP in asphyxiated infants associated with compensative increasing of ITF and low anti endotoxine immunity. 

Conclusion. Endothelial dysfunction is one of the main factor resulting in hypoxic-ischemic injury of gastrointestinal tract in asphyxiated low birth weight infants. 

Key words: preterm birth, asphyxia, intestinal barrier, endothelial dysfunction. 


1. Badalyan LO. 2010. Detskaya nevrologiya. M, MEDpress-inform: 608.

2. Volodin NN, Muhina YuG, Chubarova AI. 2011. Neonatologiya. Moskva, Dinastiya: 512.

3. Dedov II, Peterkova VA. 2006. Rukovodstvo po detskoy endokrinologii. M, Universum Pablishing: 595.

4. Linchevskiy GL, Golovko OK, Vorobeva OV. 2007. Nekroticheskiy enterokolit novorozhdennyih. Zdorove rebenka. 1: 160—166.

5. Saveleva GM. 2015. Akusherstvo. Natsionalnoe rukovodstvo. Moskva, Izd-vo «GEOTAR-MED»: 1080.

6. Filippov OS. 2009. Platsentarnaya nedostatochnost. Moskva, Izd-vo «MEDpress-inform»: 154.

7. Huseynova S, Panakhova N, Orujova P et al. 2015. Altered endothelial nitric oxide synthesis in preterm and small for gestational age infants. Pediatrics International. 2: 269—275. http://dx.doi.org/10.1111/ped.12520; PMid:25294660

8. Balzan S, Quadros CA, de Cleva R et al. 2007. Bacterial translocation: Overview of mechanisms and clinical impact. Journal of Gastroenterology and Hepatology. 22: 464—471. http://dx.doi.org/10.1111/j.1440-1746.2007.04933.x; PMid:17376034

9. Baggiolini M. 2001. Chemokines in pathology and medicine. J Intern Med. 250: 91—104. http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x; PMid:11489059

10. Ballard J, Khoury J, Wedig K. 1991. New Ballard Score, expanded to include extremely premature infants. J Pediatr. 119: 417—423. http://dx.doi.org/10.1016/S0022-3476(05)82056-6

11. Barone FC, Feuerstein GZ. 1999. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 19: 819—834. http://dx.doi.org/10.1097/00004647-199908000-00001; PMid:10458589

12. Berman L, Moss R. 2011. Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med. 16: 145—150. http://dx.doi.org/10.1016/j.siny.2011.02.002; PMid:21514258

13. Blikslager AT. 2008. Life in the gut without oxygen: adaptive mechanisms and inflammatory bowel disease. Gastroenterology. 134: 346—348. http://dx.doi.org/10.1053/j.gastro.2007.11.049; PMid:18166362

14. Boston VE. 2006.Necrotising enterocolitis and localised intestinal perforation: different diseases or ends of a spectrum of pathology. Pediatr Surg Int. 6: 477—484. http://dx.doi.org/10.1007/s00383-006-1697-5; PMid:16736213

15. Chatelain P. 2000. Children born with intra-uterine growth retardation (IUGR) or small for gestational age (SGA): long term growth and metabolic consequences. Endocrine regulations. 33: 33—36.

16. Chen ZL, He RZ, Peng Q et al. 2006. Clinical study on improving the diagnostic criteria for neonatal asphyxia. Zhonghua Er Ke Za Zhi. 44: 167—172. PMid:16624049

17. Feuerstein G, Wang X, Barone FC. 1998. Cytokines in brain ischemia – the role of TNF alpha. Cell Mol Neurobiol. 6: 695—701. http://dx.doi.org/10.1023/A:1020226020062

18. Levene M, Tudehope D, Sinha S. 2009. Essential Neonatal Medicine. Blackwell Publishing. Fourth edition: 326.

19. Kadhim H, Khalifa M, Deltenre P et al. 2006. Molecular mechanisms of cell death in periventricular leukomalacia. Neurology. 67: 293—299. http://dx.doi.org/10.1212/01.wnl.0000224754.63593.c4; PMid:16864823

20. Richter J, Pharm D, Schanbacher B et al. 2012. Lipopolysaccharide Binding Protein Enables Intestinal Epithelial Restitution Despite Lipopolysaccharide Exposure. J Pediatr Gastroenterol Nutr. 54(5): 639—644. http://dx.doi.org/10.1097/MPG.0b013e31823a895a; PMid:22002480 PMCid:PMC3288261

21. Lyall F, Greer IA, Young A, Myatt L. 1996. Nitric oxide concentrations are increased in the feto-placental circulation in intrauterine growth restriction. Placenta. 17: 165—168. http://dx.doi.org/10.1016/S0143-4004(96)80009-9

22. Noboru Toda, Kazuhide Ayajiki, Tomio Okamura. 2009. Cerebral Blood Flow Regulation by Nitric Oxide. Recent Advances. Pharmacol Rev. 61: 62—97. http://dx.doi.org/10.1124/pr.108.000547; PMid:19293146

23. Papile L, Burstein J, Burstein R. 1978. Incidence and evolution of the subependymal intraventricular hemorrhage: a study of infants with weights less than 1500 grams. J Pediatr. 92: 529—534. http://dx.doi.org/10.1016/S0022-3476(78)80282-0

24. Barkovich A, Westmark K, Partridge C et al. 1995. Perinatal asphyxia: MR findings in the first 10 days. Am J Neuroradiol. 16: 427—438. PMid:7793360

25. Philip S. 2009. Epidemiology, pathophysiology and pathogenesis of fetal and neonatal brain injury. Neonatal encephalopathy: epidemiology and overview. Fetal and Neonatal Brain Injury (pp. 1—13). David KS, William EB, Philip S, Susan RH, Maurice LD (eds.). Fourth Edition. Cambridge University Press. PMCid:PMC2648948

26. Sarnat H, Sarnat M. 1976. Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arc Neurol. 33: 695—706. http://dx.doi.org/10.1001/archneur.1976.00500100030012

27. Louis N, Hamilton K, Shekels L et al. 2006. Selective induction of Mucin-3 by hypoxia in intestinal epithelia. FASEB. 6: 1616—1627. http://dx.doi.org/10.1002/jcb.20947

28. Tikvica A, Jukic M, Pintaric I. 2008. Nitric oxide synthesis in placenta is increased in intrauterine growth restriction and fetal hypoxia. Coll Antropol. 2: 565—570.

29. Turner MA, Power S, Emmerson AJ. 2004. Gestational age and the C reactive protein response. Arch Dis Child Fetal Neonatal Ed. 89: 272—273. http://dx.doi.org/10.1136/adc.2002.011288; PMCid:PMC1721694

30. Vannuci S, Hagberg H. 2004. Hypoxia-ischemia in the immature brain. The Journal of Experimental Biology. 207: 3149—3154. http://dx.doi.org/10.1242/jeb.01064; PMid:15299036