• Development of the immune response in pneumonia caused Pseudomonas aeruginosa (part – 2)
To content

Development of the immune response in pneumonia caused Pseudomonas aeruginosa (part – 2)

SOVREMENNAYA PEDIATRIYA.2016.8(80):59-64; doi 10.15574/SP.2016.80.59

Development of the immune response in pneumonia caused Pseudomonas aeruginosa (part – 2)

Abaturov O. E., Nikulina A. O.
SI «Dnіpropetrovsk Medical Academy, of Ministry of Healthcare of Ukraine», Dnipro.

UkraineIn this paper, based on literature data analyzed key role of proinflammatory and anti-inflammatory cytokines in the development of immune response in pneumonia caused by Pseudomonas aeruginosa. Described signaling pathways that induce the production of interferons type I and III involved in the elimination of Pseudomonas aeruginosa.
Key words: pneumonia, Pseudomonas aeruginosa, cytokines, interferon type I and III.
1. Abaturov AE, Volosovets AP, Yulish EI. 2012. The induction of the molecular mechanisms of nonspecific protection of the respiratory tract. K, Private Drukarnya FD-II, Storozhuk OV: 240.

2. Al Moussawi K, Kazmierczak BI. 2014. Distinct contributions of interleukin-1α (IL-1α) and IL-1β to innate immune recognition of Pseudomonas aeruginosa in the lung. Infect Immun. 82(10): 4204-11. https://doi.org/10.1128/IAI.02218-14.

3. Hajjar AM, Harowicz H, Liggitt HD et al. 2005. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia. Am J Respir Cell Mol Biol. 33(5): 470—5. https://doi.org/10.1165/rcmb.2005-0199OC.

4. Li L, Nie W, Li W et al. 2013. Associations between TNF-α polymorphisms and pneumonia: a meta-analysis. PLoS One. 8(4): e61039. https://doi.org/10.1371/journal.pone.0061039.

5. Borthwick LA. 2016. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38(4): 517—34. https://doi.org/10.1007/s00281-016-0559-z.

6. Boxx GM, Cheng G. 2016. The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe. 19(6): 760-9. https://doi.org/10.1016/j.chom.2016.05.016.

7. Broz P. 2015. Inflammasome assembly: The wheels are turning. Cell Res. 25(12): 1277—8. https://doi.org/10.1038/cr.2015.137.

8. Cohen TS, Prince AS. 2013.Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest. 123(4): 1630—7. https://doi.org/10.1172/JCI66142.

9. Cohen TS, Prince AS. 2013. Bacterial pathogens activate a common inflammatory path-way through IFNl regulation of PDCD4. PLoS Pathog. 9(10): e1003682. https://doi.org/10.1371/journal.ppat.1003682.

10. Cohen TS, Parker D. 2016. Microbial pathogenesis and type III interferons. Cytokine Growth Factor Rev. 29: 45—51. https://doi.org/10.1016/j.cytogfr.2016.02.005.

11. Cyktor JC, Turner J. 2011.Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 79(8): 2964—73. https://doi.org/10.1128/IAI.00047-11.

12. Pene F, Zuber B, Courtine E et al. 2008. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol. 181(12): 8513—20. doi 10.4049/ jimmunol.181.12.8513.

13. Dubin PJ, Kolls JK. 2011. IL-17 in cystic fibrosis: more than just Th17 cells. Am J Respir Crit Care Med. 184(2): 155—7. https://doi.org/10.1164/rccm.201104-0617ED.

14. Sun L, Guo RF, Newstead MW et al. 2009. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol. 41(1): 76—84. https://doi.org/10.1165/rcmb.2008-0202OC.

15. Lage SL, Longo C, Branco LM et al. 2014. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol. 5: 309. https://doi.org/10.3389/fimmu.2014.00309.

16. Miyamoto M, Prause O, Sjostrand M et al. 2003. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol. 170(9): 4665—72. https://doi.org/10.4049/jimmunol.170.9.4665.

17. Farias R, Rousseau S. 2016. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol. 3: 87. https://doi.org/10.3389/fcell.2015.00087.

18. Hazlett LD, Jiang X, McClellan SA. 2014. IL-10 function, regulation, and in bacterial keratitis. J Ocul Pharmacol Ther. 30(5): 373—80. https://doi.org/10.1089/jop.2014.0018.

19. Carles M, Wagener BM, Lafargue M et al. 2014.Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin -10-dependent mechanism in mice. Anesthesiology. 120(6): 1450—62. https://doi.org/10.1097/ALN.0000000000000235.

20. Carrigan SO, Junkins R, Yang YJ et al. 2010. IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. J Immunol. 185(6): 3602—9. https://doi.org/10.4049/jimmunol.0903429.

21. Sawa T, Corry DB, Gropper MA et al. 1997. IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol. 159(6): 2858—66. PMID: 9300709.; PMid:9300709

22. Lore NI, Cigana C, Riva C et al. 2016. IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Sci Rep. 6: 25937. https://doi.org/10.1038/srep25937.

23. Huang X, McClellan SA, Barrett RP, Hazlett LD. 2002. IL-18 contributes to host resistance against infection with Pseudomonas aeruginosa through induction of IFN-gamma production. J Immunol. 168(11): 5756—63.doi 10.4049/ jimmunol.168.11.5756.

24. Hazlett LD, McClellan SA, Barrett RP et al. 2010. IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci. 51(3): 1524—32. https://doi.org/10.1167/iovs.09-3983.

25. Chang J, Xia YF, Zhang MZ, Zhang LM. 2016. IL-33 Signaling in Lung Injury. Transl Perioper Pain Med. 1(2): 24—32. PMid:27536706 PMCid:PMC4985245.

26. Spight D, Zhao B, Haas M et al. 2005. Immunoregulatory effects of regulated, lung-targeted expression of IL-10 in vivo. Am J Physiol Lung Cell Mol Physiol. 288(2): L251—65. https://doi.org/10.1152/ajplung.00122.2004; PMid:15466252

27. Parker D, Cohen TS, Alhede M et al. 2012. Induction of type I interferon signaling by Pseudomonas aeruginosa is diminished in cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol. 46(1): 6—13. https://doi.org/10.1165/rcmb.2011-0080OC.

28. Parker D, Ahn D, Cohen T, Prince A. 2016. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev. 96(1): 19—53. https://doi.org/10.1152/physrev.00009.2015.

29. Shindo Y, Fuchs AG, Davis CG et al. 2016, Sep 14. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J Leukoc Biol. pii: jlb.4A1215-581R.

30. Hsu D, Taylor P, Fletcher D et al. 2016. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun. 84(9): 2410—21. https://doi.org/10.1128/IAI.00284-16.

31. Dinarello CA, Novick D, Kim S, Kaplanski G. 2013. Interleukin-18 and IL-18 binding protein. Front Immunol. 4: 289. https://doi.org/10.3389/fimmu.2013.00289.

32. Schultz MJ, Knapp S, Florquin S et al. 2003. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa. Infect Immun. 71(4): 1630—4. https://doi.org/10.1128/IAI.71.4.1630-1634.2003.

33. Alves-Filho JC, Sonego F, Souto FO et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 16(6): 708—12. https://doi.org/10.1038/nm.2156.

34. Hamming OJ, Gad HH, Paludan S, Hartmann R. 2010. Lambda Interferons: New Cytokines with Old Functions. Pharmaceuticals (Basel). 3(4): 795—809. https://doi.org/10.3390/ph3040795.

35. Lavoie EG, Wangdi T, Kazmierczak BI. 2011. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 13(14—15): 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

36. Liew FY, Girard JP, Turnquist HR. 2016, Sep 19. Interleukin-33 in health and disease. Nat Rev Immunol. https://doi.org/10.1038/nri.2016.95.

37. Nakasone C, Kawakami K, Hoshino T et al. 2004. Limited role for interleukin-18 in the host protection response to pulmonary infection with Pseudomonas aeruginosa in mice. Infect Immun. 72(10): 6176—80. https://doi.org/10.1128/IAI.72.10.6176-6180.2003.

38. Wolbeling F, Munder A, Kerber-Momot T et al. 2011. Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. Immunobiology. 216(8): 901—8. https://doi.org/10.1016/j.imbio.2011.02.003.

39. Lee JH, Del Sorbo L, Khine AA et al. 2003. Modulation of bacterial growth by tumor necrosis factor-alpha in vitro and in vivo. Am J Respir Crit Care Med. 168(12): 1462—70. https://doi.org/10.1164/rccm.200302-303OC.

40. Molofsky AB, Savage AK, Locksley RM. 2015. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity. 42(6): 1005—19. https://doi.org/10.1016/j.immuni.2015.06.006.

41. Kanno E, Kawakami K, Miyairi S et al. 2013. Neutrophil-derived tumor necrosis factor-α contributes to acute wound healing promoted by N-(3-oxododecanoyl)-L-homoserine lactone from Pseudomonas aeruginosa. J Dermatol Sci. 70(2): 130—8. https://doi.org/10.1016/j.jdermsci.2013.01.004.

42. Novick D, Kim S, Kaplanski G, Dinarello CA. 2013, Dec 15. Interleukin-18, more than a Th1 cytokine. Semin Immunol. 25(6): 439—48. https://doi.org/10.1016/j.smim.2013.10.014.

43. Patankar YR, Mabaera R, Berwin B. 2015. Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1β response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 309(8): L902—13. https://doi.org/10.1152/ajplung.00228.2015.

44. Chmiel JF, Konstan MW, Saadane A et al. 2002. Prolonged inflammatory response to acute Pseudomonas challenge in interleukin-10 knockout mice. Am J Respir Crit Care Med. 165(8): 1176—81. https://doi.org/10.1164/ajrccm.165.8.2107051.

45. Yue L, Xie Z, Li H et al. 2016. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection. Am J Pathol. 186(5): 1234—44. https://doi.org/10.1016/j.ajpath.2016.01.005.

46. Tsay TB, Jiang YZ, Hsu CM, Chen LW. 2016. Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respir Res. 17(1): 101. https://doi.org/10.1186/s12931-016-0417-5.

47. Faure E, Mear JB, Faure K et al. 2014. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med. 189(7): 799—811. https://doi.org/10.1164/rccm.201307-1358OC.

48. Rathore JS, Wang Y. 2016. Protective role of Th17 cells in pulmonary infection. Vaccine. 34(13): 1504—14. https://doi.org/10.1016/j.vaccine.2016.02.021.

49. Kinoshita M, Shinomiya N, Ono S et al. 2006. Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J Immunol. 177(7): 4627—35. https://doi.org/10.4049/jimmunol.177.7.4627.

50. Palomo J, Marchiol T, Piotet J et al. 2014. Role of IL-1β in experimental cystic fibrosis upon P. aeruginosa infection. PLoS One. 9(12): e114884. https://doi.org/10.1371/journal.pone.0114884.

51. Schultz MJ, Rijneveld AW, Florquin S et al. 2002. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 282(2): L285—90. https://doi.org/10.1152/ajplung.00461.2000; PMid:11792633

52. Xu X, Shao B, Wang R et al. 2014. Role of Interleukin-17 in defense against pseudomonas aeruginosa infection in lungs. Int J Clin Exp Med. 7(4): 809—16. PMID: 24955149. PMid:24955149 PMCid:PMC4057828.

53. Skerrett SJ, Martin TR, Chi EY et al. 1999. Role of the type 1 TNF receptor in lung inflammation after inhalation of endotoxin or Pseudomonas aeruginosa. Am J Physiol. 276 (5 Pt 1): L715—27. PMid:10330027.

54. Roy S, Karmakar M, Pearlman E. 2014. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem. 289(2): 1174—82. https://doi.org/10.1074/jbc.M113.523167.

55. Huang J, Yu S, Ji C, Li J. 2015. Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis. 20(2): 210—5. https://doi.org/10.1007/s10495-014-1061-5.

56. Lore NI, Bragonzi A, Cigana C et al. 2016. The IL(17A/IL(17RA axis in pulmonary defence and immunopathology. Cytokine Growth Factor Rev. 30: 19—27. https://doi.org/10.1016/j.cytogfr.2016.03.009.

57. Liu J, Qu H, Li Q et al. 2013.The responses of γδ T-cells against acute Pseudomonas aeruginosa pulmonary infection in mice via interleukin-17. Pathog Dis. 68(2): 44—51. doi 10.1111/2049632X.12043.

58. Wonnenberg B, Bischoff M, Beisswenger C et al. 2016. The role of IL-1β in Pseudomonas aeruginosa in lung infection. Cell Tissue Res. 364(2): 225—9. https://doi.org/10.1007/s00441-016-2387-9.

59. Choi S, Park YS, Koga T et al. 2011. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 44(2): 255—60. https://doi.org/10.1165/rcmb.2009-0323OC.

60. Xiao M. 2016. The Role of Proinflammatory Cytokine Interleukin-18 in Radiation Injury. Health Phys. 111(2): 212—7. doi 10.1097/HP. 0000000000000494.