• Development of the immune response pneumonia due to pseudomonas aeruginosa (part 3)
en To content Full text of article

Development of the immune response pneumonia due to pseudomonas aeruginosa (part 3)

SOVREMENNAYA PEDIATRIYA.2017.1(81):52-63; doi 10.15574/SP.2017.81.52

Abaturov A. E., Nikulinа A. A.
SE «Dnepropetrovsk Medical Academy, Ministry of Health of Ukraine», Dnepr, Ukraine

The article based on the literature demonstrated a role in the development of cellular immune reactions in response pneumonia caused by Pseudomonas aeruginosa. The mechanisms described of recruitment and activation of pro-inflammatory immune cells, killing the bacterial processes that ensure effective sanogenesis infection by Pseudomonas aeruginosa and prevent the formation of a chronic inflammatory process.

Key words: pneumonia, Pseudomonas aeruginosa, bacterial killing, immune cells


1. Abaturov AE. 2009. Meaning metallosvyazyvayuschih nonspecific proteins in protection of the respiratory tract. 1. Lactoferrin. Child Health. 4(19): 125-128.

2. Abaturov AE, Volosovets AP, Yulish EI. 2013. The role of prooxidant and antioxidant systems in inflammatory diseases of the respiratory. Kharkov, Planet Print: 496.

3. Abaturov AE, Gerasimenko ON, Vysochina IL, Zavgorodnyaya NJ. 2011. Defensins and defensin-dependent diseases. Odessa, WWII Publishing: 265.

4. Rzemieniak SE, Hirschfeld AF, Victor RE et al. 2010. Acidification-dependent activation of CD1d-restricted natural killer T cells is intact in cystic fibrosis. Immunology. 130(2): 288—95. https://doi.org/10.1111/j.1365-2567.2009.03234.x.

5. Damlund DS, Christophersen L, Jensen PО et al. 2016. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice. APMIS. 124(6): 500—7. https://doi.org/10.1111/apm.12530.

6. Aggarwal NR, King LS, D'Alessio FR. 2014, Apr 15. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 306(8): 709—25. https://doi.org/10.1152/ajplung.00341.2013.

7. Kannan S, Huang H, Seeger D et al. 2009. Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection. PLoS One. 4(3): 4891. https://doi.org/10.1371/journal.pone.0004891.

8. Ammons MC, Copiѐ V. 2013. Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling. 29(4): 443—55. https://doi.org/10.1080/08927014.2013.773317.

9. Andrews T, Sullivan KE. 2003. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev. 16(4): 597—621. https://doi.org/10.1128/CMR.16.4.597-621.2003.

10. Chen R, Cole N, Dutta D et al. 2016, Oct 19. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33804.

11. Sanchez-Gomez S, Ferrer-Espada R, Stewart PS et al. 2015, Jul 7. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 15: 137. https://doi.org/10.1186/s12866-015-0473-x

12. Wei HM, Lin LC, Wang CF et al. 2016, Jun 8. Antimicrobial Properties of an Immunomodulator — 15 kDa Human Granulysin. PLoS One. 11(6): e0156321. https://doi.org/10.1371/journal.pone.0156321.

13. Bayes HK, Ritchie ND, Evans TJ. 2016, Oct 3. IL-17 is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa. Infect Immun. pii: IAI.00717-16.

14. Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87(1): 245—313. https://doi.org/10.1152/physrev.00044.2005.

15. Bogdan C. 2015. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36(3): 161—78. https://doi.org/10.1016/j.it.2015.01.003.

16. Bystrom J, Taher TE, Muhyaddin MS. 2015. Harnessing the Therapeutic Potential of Th17 Cells. Mediators Inflamm. 2015: 205156. https://doi.org/10.1155/2015/205156.

17. Nieuwenhuis EE, Matsumoto T, Lindenbergh D et al. 2009. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest. 119(5): 1241—50. https://doi.org/10.1172/JCI36509.

18. Cheung DO, Halsey K, Speert DP. 2000. Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa. Infect Immun. 68(8): 4585—92. https://doi.org/10.1128/IAI.68.8.4585-4592.2000; PMid:10899859 PMCid:PMC98382

19. Chung JW, Piao ZH, Yoon SR. 2009. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis. PLoS Pathog. 5(8): e1000561. https://doi.org/10.1371/journal.ppat.1000561.

20. Cohen NR, Garg S, Brenner MB. 2009. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol. 102: 1—94. https://doi.org/10.1016/S0065-2776(09)01201-2.

21. Cortjens BJ, van Woensel B, Bem RA. 2016, Jun 29. Neutrophil Extracellular Traps in Respiratory Disease: guided anti-microbial traps or toxic webs? Paediatr Respir Rev. pii: S1526-0542(16)30060-4. https://doi.org/10.1016/j.prrv.2016.03.007.

22. Cowland JB, Borregaard N. 2016. Granulopoiesis and granules of human neutrophils. Immunol Rev. 273(1): 11—28. https://doi.org/10.1111/imr.12440.

23. Tsai WC, Strieter RM, Mehrad B et al. 2000. CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun. 68(7): 4289—96. https://doi.org/10.1128/IAI.68.7.4289-4296.2000; PMid:10858247 PMCid:PMC101748

24. Carevic M, Oz H, Fuchs K et al. 2016. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense. J Innate Immun. 8(4): 362—73. https://doi.org/10.1159/000444125.

25. DeCoursey TE. 2010. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda). 25(1): 27—40. https://doi.org/10.1152/physiol.00039.2009.

26. Pene F, Zuber B, Courtine E et al. 2008, Dec 15. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol. 181(12): 8513—20. https://doi.org/10.4049/jimmunol.181.12.8513.

27. Carrigan SO, Yang YJ, Issekutz T et al. 2009. Depletion of natural CD4+CD25+ T regulatory cells with anti-CD25 anti-body does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice. Immunobiology. 214(3): 211—22. https://doi.org/10.1016/j.imbio.2008.07.027.

28. Broquet A, Roquilly A, Jacqueline C et al. 2014. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model. Crit Care Med. 42(6): 441—50. https://doi.org/10.1097/CCM.0000000000000311.

29. Satoh S, Oishi K, Iwagaki A et al. 2001. Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice. Clin Exp Immunol. 126(2): 266—73. https://doi.org/10.1046/j.1365-2249.2001.01656.x.

30. Shan Q, Dwyer M, Rahman S, Gadjeva M. 2014. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity. Infect Immun. 82(10): 4135—43. https://doi.org/10.1128/IAI.02169-14.

31. Halverson TW, Wilton M, Poon KK et al. 2015, Jan 15. DNA is an antimicrobial component of neutrophil extracellular traps. PLoS Pathog. 11 (1): e1004593. https://doi.org/10.1371/journal.ppat.1004593.

32. Webert KE, Vanderzwan J, Duggan M et al. 2000. Effects of inhaled nitric oxide in a rat model of Pseudomonas aeruginosa pneumonia. Crit Care Med. 28(7): 2397—405. https://doi.org/10.1097/00003246-200007000-00035; PMid:10921570

33. Mukae H, Ishimoto H, Yanagi S et al. 2007. Elevated BALF concentrations of alpha- and beta-defensins in patients with pulmonary alveolar proteinosis. Respir Med. 101(4): 715—21. https://doi.org/10.1016/j.rmed.2006.08.018.

34. Manicone AM, Birkland TP, Lin M et al. 2009, Mar 15. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J Immunol. 182(6): 3866—76. doi: 10.4049/jimmunol. 0713949.

35. Fang FC. 2011, Sep 6. Antimicrobial actions of reactive oxygen species. MBio. 2(5). pii: e00141—11. https://doi.org/10.1128/mBio.00141-11.

36. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2(10): 820—32. https://doi.org/10.1038/nrmicro1004.

37. Flannagan RS, Jaumouillѐ V, Grinstein S. 2012. The cell biology of phagocytosis. Annu Rev Pathol. 7: 61—98. https://doi.org/10.1146/annurev-pathol-011811-132445.

38. Ginhoux F. 2014. Fate PPAR-titioning: PPAR-γ «instructs» alveolar macrophage development. Nat Immunol. 15(11): 1005—7. https://doi.org/10.1038/ni.3011.

39. Hussell T, Bell TJ. 2014. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 14(2): 81—93. https://doi.org/10.1038/nri3600.

40. Renoux VM, Zriwil A, Peitzsch C et al. 2015, Aug 18. Identification of a Human Natural Killer Cell Lineage-Restricted Progenitor in Fetal and Adult Tissues. Immunity. 43(2): 394—407. https://doi.org/10.1016/j.immuni.2015.07.011.

41. Priebe GP, Walsh RL, Cederroth TA et al. 2008, Oct 1. IL-17 is a critical component of vaccine-induced protection against lung infection by lipopolysaccharide-heterologous strains of Pseudomonas aeruginosa. J Immunol. 181(7): 4965—75. https://doi.org/10.4049/jimmunol.181.7.4965; PMid:18802100 PMCid:PMC2597098.

42. McCaslin CA, Petrusca DN, Poirier C et al. 2015. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance. J Cyst Fibros. 14(1): 70—7. https://doi.org/10.1016/j.jcf.2014.06.009.

43. Moser C, Jensen PO, Kobayashi O et al. 2002. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol. 127(2): 206—13. https://doi.org/10.1046/j.1365-2249.2002.01731.x.

44. Koh AY, Priebe GP, Ray C et al. 2009. Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun. 77(12): 5300-10. https://doi.org/10.1128/IAI.00501-09.

45. Speert DP, Bond M, Woodman RC, Curnutte JT. 1994. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J Infect Dis. 170(6): 1524—31. https://doi.org/10.1093/infdis/170.6.1524.

46. Miller CC, Hergott CA, Rohan M et al. 2013. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibros. 12(6): 817—20. https://doi.org/10.1016/j.jcf.2013.01.008.

47. Parker D, Ahn D, Cohen T, Prince A. 2016. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev. 96(1): 19—53. https://doi.org/10.1152/physrev.00009.2015.

48. Vivier E, Raulet DH, Moretta A et al. 2011, Jan 7. Innate or adaptive immunity? The example of natural killer cells. Science. 331(6013): 44—9. https://doi.org/10.1126/science.1198687.

49. Kettritz R. 2016. Neutral serine proteases of neutrophils. Immunol Rev. 273(1): 232—48. https://doi.org/10.1111/imr.12441.

50. Kim YJ, Jun YH, Kim YR. 2014, Mar 24. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis. 14: 161. https://doi.org/10.1186/1471-2334-14-161.

51. Lavoie EG, Wangdi T, Kazmierczak BI. 2011. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 13(14-15): 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

52. Lee WL, Downey GP. 2001, Sep 1. Leukocyte elastase: physiological functions and role in acute lung injury. Am J Respir Crit Care Med. 164(5): 896—904. https://doi.org/10.1164/ajrccm.164.5.2103040.

53. Wolach B, Gavrieli R, Roos D, Berger-Achituv S. 2012. Lessons learned from phagocytic function studies in a large cohort of patients with recurrent infections. J Clin Immunol. 32(3): 454—66. https://doi.org/10.1007/s10875-011-9633-4.

54. Lovewell RR, Patankar YR, Berwin B. 2014, Apr 1. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 306(7): 591—603. https://doi.org/10.1152/ajplung.00335.2013.

55. Lu Y, Slomberg DL, Schoenfisch MH. 2014. Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials. 35(5): 1716—24. doi: 10.1016/j. biomaterials.2013.11.015.

56. Kaur M, Bell T, Salek-Ardakani S, Hussell T. 2015. Macrophage adaptation in airway inflammatory resolution. Eur Respir Rev. 24(137): 510—5. https://doi.org/10.1183/16000617.0030-2015.

57. Marrero I, Ware R, Kumar V. 2015, Jun 17. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front Immunol. 6: 316. https://doi.org/10.3389/fimmu.2015.00316.

58. Kamei A, Coutinho-Sledge YS, Goldberg JB et al. 2011. Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection. Infect Immun. 79(3): 1289—99. https://doi.org/10.1128/IAI.01139-10.

59. Klebanoff SJ, Kettle AJ, Rosen H et al. 2013. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 93(2): 185—98. https://doi.org/10.1189/jlb.0712349.

60. Nauseef WM, Borregaard N. 2014. Neutrophils at work. Nat Immunol. 15(7): 602—11. https://doi.org/10.1038/ni.2921.

61. Hirche TO, Benabid R, Deslee G et al. 2008, Oct 1. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa. J Immunol. 181(7): 4945—54. https://doi.org/10.4049/jimmunol.181.7.4945.

62. Kruger P, Saffarzadeh M, Weber AN et al. 2015, Mar 12. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 11(3): 1004651. https://doi.org/10.1371/journal.ppat.1004651.

63. Yang H, Biermann MH, Brauner JM et al. 2016, Aug 12. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol. 7: 302. https://doi.org/10.3389/fimmu.2016.00302.

64. Wesselkamper SC, Eppert BL, Motz GT et al. 2008, Oct 15. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection. J Immunol. 181(8): 5481—9. https://doi.org/10.4049/jimmunol.181.8.5481; PMid:18832705 PMCid:PMC2567053.

65. Kinjo T, Nakamatsu M, Nakasone C et al. 2006. NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa. Microbes Infect. 8(12—13): 2679—85. https://doi.org/10.1016/j.micinf.2006.07.016.

66. Nordenfelt P, Tapper H. 2011. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol. 90(2): 271—84. https://doi.org/10.1189/jlb.0810457.

67. Odobasic D, Kitching AR, Holdsworth SR. 2016. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase. J Immunol Res. 2016: 2349817. https://doi.org/10.1155/2016/2349817.

68. Pallmer K, Oxenius A. 2016, Jun 24. Recognition and Regulation of T Cells by NK Cells. Front Immunol. 7: 251. doi: 10.3389/fimmu. 2016.00251.

69. Ballinger MN, Hubbard LL, McMillan TR et al. 2008. Paradoxical role of alveolar macrophage-derived granulocyte-macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol. 295(1): 114—22. https://doi.org/10.1152/ajplung.00309.2007.

70. Bae YS, Lee HY, Jung YS et al. 2016, Sep 27. Phospholipase Cγ in Toll-like receptor-mediated inflammation and innate immunity. Adv Biol Regul. pii: S2212—4926(16)30032-X. https://doi.org/10.1016/j.jbior.2016.09.006.

71. Porto BN, Stein RT. 2016, Aug 15. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing? Front Immunol. 7: 311. https://doi.org/10.3389/fimmu.2016.00311.

72. Hubbard LL, Wilke CA, White ES, Moore BB. 2011. PTEN limits alveolar macrophage function against Pseudomonas aeruginosa after bone marrow transplantation. Am J Respir Cell Mol Biol. 45(5): 1050—8. https://doi.org/10.1165/rcmb.2011-0079OC.

73. Cifani N, Pompili B, Anile M et al. 2013, Aug 19. Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages. PLoS One. 8(8): e71717. https://doi.org/10.1371/journal.pone.0071717.

74. Jose R, Williams A, Sulikowski M et al. 2015, Feb 26. Regulation of neutrophilic inflammation in lung injury induced by community–acquired pneumonia. Lancet. 385; Suppl 1: 52. https://doi.org/10.1016/S0140-6736(15)60367-1.

75. Subramanian P, Mitroulis I, Hajishengallis G, Chavakis T. 2016. Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol. 23(1): 36-43. https://doi.org/10.1097/MOH.0000000000000198.

76. Reighard KP, Schoenfisch MH. 2015. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions. Antimicrob Agents Chemother. 59(10): 6506—13. https://doi.org/10.1128/AAC.01208-15.

77. Kisic B, Miric D, Dragojevic I et al. 2016. Role of Myeloperoxidase in Patients with Chronic Kidney Disease. Oxid Med Cell Longev. 2016: 1069743. https://doi.org/10.1155/2016/1069743.

78. Schoeniger A, Fuhrmann H, Schumann J. 2016, Feb 4. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. Peer J. 4: 1663. https://doi.org/10.7717/peerj.1663.

79. Seillet C, Belz G, Huntington ND. 2016. Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. Curr Top Microbiol Immunol. 395: 37—61. doi: 10.1007/82-2015-474.

80. Zhang M, Liu N, Park SM et al. 2007, Oct 1. Serine protease inhibitor 6-deficient mice have increased neutrophil immunity to Pseudomonas aeruginosa. J Immunol. 179(7): 4390—6. https://doi.org/10.4049/jimmunol.179.7.4390

81. Lighvani S, Huang X, Trivedi PP et al. 2005. Substance P regulates natural killer cell interferon-gamma production and resistance to Pseudomonas aeruginosa infection. Eur J Immunol. 35(5): 1567—75. https://doi.org/10.1002/eji.200425902.

82. Morales-Nebreda L, Misharin AV, Perlman H, Budinger GR. 2015. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev. 24(137): 505—9. https://doi.org/10.1183/16000617.0031-2015.

83. Benoit P, Sigounas VY, Thompson JL et al. 2015. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background. Infect Immun. 83(6): 2557—65. https://doi.org/10.1128/IAI.00015-15.

84. Mazzi P, Caveggion E, Lapinet-Vera JA et al. 2015, Sep 1. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. J Immunol. 195(5): 2383—95. https://doi.org/10.4049/jimmunol.1402011.

85. Wood S, Goldufsky J, Shafikhani SH. 2015, May 28. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin. PLoS Pathog. 11(5): e1004934. https://doi.org/10.1371/journal.ppat.1004934.

86. Yehia HM, Hassanein WA, Ibraheim SM. 2015. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Biomed Res Int. 2015: 651464. https://doi.org/10.1155/2015/651464.

Содержание журнала Full text of article