• Development of immune response in pneumonia caused by Klebsiella pneumoniae (part 3)

Development of immune response in pneumonia caused by Klebsiella pneumoniae (part 3)

SOVREMENNAYA PEDIATRIYA.2017.7(87):53-63; doi 10.15574/SP.2017.87.53

Abaturov O.E., Nikulina A.O.
SI «Dnіpropetrovsk Medical Academy of Health Ministry of Ukraine», Dnipro, Ukraine

The role of chemokines and defensins in the development of immune response in pneumonia caused by Klebsiella pneumonia based on literature data is high-lighted in the article. Data on chemokine receptors, expressed cells that involved in bacterial clearance, as well as TLR-associated signalling pathways involved in the regulation of defensin production in pneumonia caused by Klebsiella pneumonia are presented.

Key words: pneumonia, Klebsiella pneumoniae, chemokines, defensins


1. Abaturov AE, Gerasimenko ON, Vysochina IL, Zavgorodnyaya NJ. (2011). Defensins and defensin-dependent diseases. Odessa; VMV: 265.

2. Allen SJ, Crown SE, Handel TM. (2007). Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 25:787-820. doi: 10.1146/annurev.immunol.24.021605.090529.

3. Allen TC, Kurdowska A. (2014, Feb). Interleukin 8 and acute lung injury. Arch Pathol Lab Med. 138(2): 266-9. https://doi.org/10.5858/arpa.2013-0182-RA.

4. Dulek DE, Newcomb DC, Goleniewska K et al. (2014, Sep). Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun. 82(9): 3723-39. https://doi.org/10.1128/IAI.00035-14.

5. Gollwitzer H, Dombrowski Y, Prodinger PM et al. (2013, Apr 3) Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J Bone Joint Surg Am. 95(7): 644-51. https://doi.org/10.2106/JBJS.L.00205.

6. Mattar EH, Almehdar HA, Yacoub HA, Uversky VN, Redwan EM. (2016, Apr). Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine Growth Factor Rev. 28: 95-111. https://doi.org/10.1016/j.cytogfr.2015.11.002.

7. Bhatia M, Zemans RL, Jeyaseelan S. (2012, May). Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol. 46(5): 566-72. https://doi.org/10.1165/rcmb.2011-0392TR.

8. Shi C, Jia T, Mendez-Ferrer S et al. (2011, Apr 22). Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 34(4): 590-601. https://doi.org/10.1016/j.immuni.2011.02.016.

9. Hielpos MS, Ferrero MC, Fernández AG et al. (2015, Oct 8). CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection. PLoS One. 10(10): e0140408. https://doi.org/10.1371/journal.pone.0140408.

10. Francis M, Groves A, Sun R et al. (2016, Nov 11). CCR2 Regulates Inflammatory Cell Accumulation in the Lung and Tissue Injury Following Ozone Exposure. Toxicol Sci.  pii: kfw226. PMID: 27837169.

11. Liang M, Jiang Z, Huang Q et al. (2016, Dec 13). Clinical Association of Chemokine (C-X-C motif) Ligand 1 (CXCL1) with Interstitial Pneumonia with Autoimmune Features (IPAF). Sci Rep. 6: 38949. https://doi.org/10.1038/srep38949.

12. Cole JN, Nizet V. (2016, Feb). Bacterial Evasion of Host Antimicrobial Peptide Defenses. Microbiol Spectr. 4(1). https://doi.org/10.1128/microbiolspec.VMBF-0006-2015.

13. Planagumà A, Domènech T, Pont M et al. (2015, Oct). Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm Pharmacol Ther. 34: 37-45. https://doi.org/10.1016/j.pupt.2015.08.002.

14. Cai S, Batra S, Lira SA, Kolls JK, Jeyaseelan S. (2010, Nov 15). CXCL1 regulates pulmonary host defense to Klebsiella Infection via CXCL2, CXCL5, NF-kappaB, and MAPKs. J Immunol. 185(10): 6214-25. https://doi.org/10.4049/jimmunol.0903843.

15. Wei J, Peng J, Wang B et al. (2013). CXCR1/CXCR2 antagonism is effective in pulmonary defense against Klebsiella pneumoniae infection. Biomed Res Int. 2013: 720975. https://doi.org/10.1155/2013/720975.

16. Schneberger D, Gordon JR, DeVasure JM et al. (2015, Apr). CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks lung inflammation in swine barn dust-instilled mice. Pulm Pharmacol Ther. 31: 55-62. https://doi.org/10.1016/j.pupt.2015.02.002.

17. Lee K, Chung W, Jung Y et al. (2015, Feb). CXCR3 ligands as clinical markers for pulmonary tuberculosis. Int J Tuberc Lung Dis. 19(2): 191-9. https://doi.org/10.5588/ijtld.14.0525.

18. Chalifour A, Jeannin P, Gauchat JF et al. (2004, Sep 15). Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood. 104(6): 1778-83. https://doi.org/10.1182/blood-2003-08-2820.

19. Xiong H, Carter RA, Leiner IM et al. (2015, Sep). Distinct Contributions of Neutrophils and CCR2+ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae  Strains. Infect Immun. 83(9): 3418-27. https://doi.org/10.1128/IAI.00678-15.

20. Fleischmann J, Selsted ME, Lehrer RI. (1985, May). Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn Microbiol Infect Dis. 3(3): 233-42. https://doi.org/10.1016/0732-8893(85)90035-5.

21. Szpakowska M, Fievez V, Arumugan K et al. (2012, Nov 15). Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol. 84(10): 1366-80. https://doi.org/10.1016/j.bcp.2012.08.008.

22. Lee JU, Cheong HS, Shim EY et al. (2017, Jan 5). Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir Res. 18(1): 3. https://doi.org/10.1186/s12931-016-0493-6.

23. Cheng SS, Lai JJ, Lukacs NW, Kunkel SL. (2001, Jan 15). Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol. 166(2): 1178-84. https://doi.org/10.4049/jimmunol.166.2.1178; PMid:11145699.

24. Chen L, Zhang Z, Barletta KE, Burdick MD, Mehrad B. (2013, Nov 15). Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors. Am J Physiol Lung Cell Mol Physiol. 305(10): L702-11. https://doi.org/10.1152/ajplung.00194.2013.

25. Glenthоj A, Dahl S, Larsen MT et al. (2014, Mar 21). Human α-defensin expression is not dependent on CCAAT/enhancer binding protein-ε in a murine model. PLoS One. 9(3): e92471. https://doi.org/10.1371/journal.pone.0092471.

26. Ishimoto H, Mukae H, Date Y et al. (2006, Feb). Identification of hBD-3 in respiratory tract and serum: the increase in pneumonia. Eur Respir J. 27(2): 253-60. https://doi.org/10.1183/09031936.06.00105904.

27. Welling MM, Nibbering PH, Paulusma-Annema A et al. (1999, Dec). Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med. 40(12): 2073-80. PMid:10616888

28. Chen SC, Mehrad B, Deng JC et al. (2001, Mar 1). Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine. J Immunol. 166(5): 3362-8. https://doi.org/10.4049/jimmunol.166.5.3362.

29. Routsias JG, Karagounis P, Parvulesku G et al. (2010, Sep). In vitro bactericidal activity of human beta-defensin 2 against nosocomial strains. Peptides. 31(9): 1654-60. https://doi.org/10.1016/j.peptides.2010.06.010.

30. Zeng X, Moore TA, Newstead MW et al. (2005, Dec). Interferon-inducible protein 10, but not monokine induced by gamma interferon, promotes protective type 1 immunity in murine Klebsiella pneumoniae  pneumonia. Infect Immun. 73(12): 8226-36. https://doi.org/10.1128/IAI.73.12.8226-8236.2005.

31. Bachelerie F, Ben-Baruch A, Burkhardt AM et al. (2013, Nov 11) International Union of Basic and Clinical Pharmacology. Corrected. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 66(1): 1-79. https://doi.org/10.1124/pr.113.007724.

32. Murphy PM, Baggiolini M, Charo IF et al. (2000, Mar). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 52(1): 145-76. PMid:10699158.

33. Batra S, Cai S, Balamayooran G, Jeyaseelan S. (2012, Apr 1). Intrapulmonary administration of leukotriene B(4) augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice. J Immunol. 188(7): 3458-68. https://doi.org/10.4049/jimmunol.1101985.

34. Zeng X, Moore TA, Newstead MW et al. (2005, Feb). IP-10 mediates selective mononuclear cell accumulation and activation in response to intrapulmonary transgenic expression and during adenovirus-induced pulmonary inflammation. J Interferon Cytokine Res. 25(2): 103-12. https://doi.org/10.1089/jir.2005.25.103.

35. Jarczak J, Kościuczuk EM, Lisowski P et al. (2013, Sep). Defensins: natural component of human innate immunity. Hum Immunol. 74(9): 1069-79. https://doi.org/10.1016/j.humimm.2013.05.008.

36. Moranta D, Regueiro V, March C et al. (2010, Mar). Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect Immun. 78(3): 1135-46. https://doi.org/10.1128/IAI.00940-09.

37. Motta C, Salmeri M, Anfuso CD et al. (2014, Feb). Klebsiella pneumoniae induces an inflammatory response in an in vitro model of blood-retinal barrier. Infect Immun. 82(2): 851-63. https://doi.org/10.1128/IAI.00843-13.

38. Lee JC, Lee EJ, Lee JH et al. (2012, Jun). Klebsiella pneumoniae  secretes outer membrane vesicles that induce the innate immune response. FEMS Microbiol Lett. 331(1): 17-24. https://doi.org/10.1111/j.1574-6968.2012.02549.x.

39. Lira SA, Furtado GC. (2012, Dec). The biology of chemokines and their receptors. Immunol Res. 54(1-3): 111-20. https://doi.org/10.1007/s12026-012-8313-7.

40. Tsai WC, Strieter RM, Wilkowski JM et al. (1998, Sep 1). Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae  in mice. J Immunol. 161(5): 2435-40. PMid:9725241.

41. Lindell DM, Standiford TJ, Mancuso P, Leshen ZJ, Huffnagle GB. (2001, Oct). Macrophage inflammatory protein 1alpha/CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection. Infect Immun. 69(10): 6364-9. https://doi.org/10.1128/IAI.69.10.6364-6369.2001.

42. Möllerherm H, von Köckritz-Blickwede M, Branitzki-Heinemann K. (2016, Jul 18). Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps. Front Immunol. 7: 265. https://doi.org/10.3389/fimmu.2016.00265.

43. Niyonsaba F, Kiatsurayanon C, Ogawa H. (2016, Dec). The role of human β-defensins in allergic diseases. Clin Exp Allergy. 46(12): 1522-1530. https://doi.org/10.1111/cea.12843.

44. Palomino DC, Marti LC. (2015, Jul-Sep). Chemokines and immunity. Einstein (Sao Paulo). 13(3): 469-73. https://doi.org/10.1590/S1679-45082015RB3438.

45. Parmentier M. (2015, Jun 8). CCR5 and HIV Infection, a View from Brussels. Front Immunol. 6: 295. https://doi.org/10.3389/fimmu.2015.00295.

46. Randolph GJ, Ochando J, Partida-Sánchez S. (2008). Migration of dendritic cell subsets and their precursors. Annu Rev Immunol. 26: 293-316. https://doi.org/10.1146/annurev.immunol.26.021607.090254.

47. Metzemaekers M, Van Damme J, Mortier A, Proost P. (2016, Nov 11). Regulation of Chemokine Activity – A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol. 7: 483. https://doi.org/10.3389/fimmu.2016.00483.

48. Chu HX, Arumugam TV, Gelderblom M et al. (2014, Sep). Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab. 34(9): 1425-9. https://doi.org/10.1038/jcbfm.2014.120.

49. Rot A, von Andrian UH. (2004). Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 22: 891-928. https://doi.org/10.1146/annurev.immunol.22.012703.104543.

50. Scharf S, Zahlten J, Szymanski K et al. (2012, Mar). Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium. Exp Lung Res. 38(2): 100-10. https://doi.org/10.3109/01902148.2011.652802.

51. Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J. (2004, Jul). Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol. 76(1): 185-94. https://doi.org/10.1189/jlb.1003479.

52. Tecle T, Tripathi S, Hartshorn KL. (2010, Jun). Review: Defensins and cathelicidins in lung immunity. Innate Immun. 16(3): 151-9. https://doi.org/10.1177/1753425910365734.

53. Liu Q, Li A, Tian Y et al. (2016, Oct). The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31: 61-71. https://doi.org/10.1016/j.cytogfr.2016.08.002.

54. David JM, Dominguez C, Hamilton DH, Palena C. (2016, Jun 24). The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines (Basel). 4(3). pii: E22. https://doi.org/10.3390/vaccines4030022.

55. Sugitharini V, Pavani K, Prema A et al. (2014, Oct). TLR-mediated inflammatory response to neonatal pathogens and co-infection in neonatal immune cells. Cytokine. 69(2): 211-7. https://doi.org/10.1016/j.cyto.2014.06.003.

56. Yang H, Zhang X, Geng J, Zheng Z, Fu Q. (2014, Nov). Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae  infection. Pediatr Infect Dis J. 33(11): e310-5. doi: 0.1097/INF.0000000000000395.

57. Kusagaya H, Fujisawa T, Yamanaka K et al. (2014, Jan). Toll-like receptor-mediated airway IL-17C enhances epithelial host defense in an autocrine/paracrine manner. Am J Respir Cell Mol Biol. 50(1): 30-9. https://doi.org/10.1165/rcmb.2013-0130OC.

58. Alfaro C, Teijeira A, Oñate C et al. (2016, Aug 1). Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clin Cancer Res. 22(15): 3924-36. https://doi.org/10.1158/1078-0432.CCR-15-2463.

59. Wang G. (2014, May 13). Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 7(5): 545-94. https://doi.org/10.3390/ph7050545.

60. Waterer GW. (2012, Jun). Airway defense mechanisms. Clin Chest Med. 33(2): 199-209. https://doi.org/10.1016/j.ccm.2012.03.003.

61. Zimmermann HW, Sterzer V, Sahin H. (2014). CCR1 and CCR2 antagonists. Curr Top Med Chem. 14(13): 1539-52. https://doi.org/10.2174/1568026614666140827144115.