• Development of the immune response in pneumonia caused by Klebsiella pneumoniae. Part 1

Development of the immune response in pneumonia caused by Klebsiella pneumoniae. Part 1

SOVREMENNAYA PEDIATRIYA.2017.5(85):94-109; doi 10.15574/SP.2017.85.94

Abaturov A. E., Nikulina A. A.
SE «Dnepropetrovsk Medical Academy of Health Ministry of Ukraine», Dnepr, Ukraine

The article shows the role of Klebsiella pneumoniae in the structure of nosocomial pneumonia and the immune response mechanisms aimed at eradication of the extracellular pathogen. Based on the analysis of literature sources, the current understanding of the molecular mechanisms of recognition of the Klebsiella pneumoniae pathogen-associated molecular patterns and the induction of intracellular signaling pathways of effectory cells of the respiratory tract is presented.
Key words: pneumonia, Klebsiella pneumoniae, children, immune response, PRR.


1. Abaturov AE, Volosovets AP, Yulish EI. (2012). The induction of the molecular mechanisms of nonspecific protection of the respiratory tract. K. Private Drukarnya FD-II Storozhuk OV: 240.

2. Abaturov AE, Volosovets AP, Yulish EI. (2011). The initiation of the inflammatory process in viral and bacterial diseases, possibilities and prospects of medical management. Kharkiv: SAM Ltd: 392.

3. Svitich OA, Omarova SM, Aliyev AI. (2016). A study of the microflora and the innate immunity of the mucous membranes and upper respiratory tract infection of the fetus in utero and neonatal pneumonia. Medical Immunology. 18(2): 163-170. https://doi.org/10.15789/1563-0625-2016-2-163-170

4. Tsaregorodcev AD, Haertynov HS, Anokhin VA. (2016). Klebsiellezny neonatal sepsis. Russian Gazette Perinatology and pediatrics. 61(4): 49-54. doi 10.21508/1027-4065-2016-61-4-49-54.

5. Matsumoto M, Tanaka T, Kaisho T. (1999, Nov 1). A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 163(9): 5039-48. PMid:10528209.

6. Zhou R, Yazdi AS, Menu P, Tschopp J. (2011, Jan 13). A role for mitochondria in NLRP3 inflammasome activation. Nature. 469(7329): 221-5. https://doi.org/10.1038/nature09663.

7. Swathi CH, Chikala R, Ratnakar KS, Sritharan V. (2016, Jul). A structural, epidemiological & genetic overview of Klebsiella pneumoniae carbapenemases (KPCs). Indian J Med Res.144(1): 21-31. https://doi.org/10.4103/0971-5916.193279.

8. Berne C, Ducret A, Hardy GG, Brun YV. (2015, Aug). Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol Spectr. 3(4). https://doi.org/10.1128/microbiolspec.MB-0018-2015.

9. Anand PK, Malireddi RK, Kanneganti TD. (2011, Feb 2). Role of the nlrp3 inflammasome in microbial infection. Front Microbiol. 2: 12. https://doi.org/10.3389/fmicb.2011.00012.

10. Hole CR. Leopold Wager CM, Mendiola AS. (2016, Aug 19). Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species. Infect Immun. 84(9): 2493-504. https://doi.org/10.1128/IAI.00103-16.

11. Bauer S. (2013, Jan). Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? Immunol Lett. 149(1-2): 85-7. https://doi.org/10.1016/j.imlet.2012.11.003.

12. Eriksson M, Serna S, Maglinao M. (2014, Apr 14). Biological evaluation of multivalent lewis X-MGL-1 interactions. Chembiochem. 15(6): 844-51. https://doi.org/10.1002/cbic.201300764.

13. Cai S, Batra S, Shen L. (2009). Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection. J Immunol. 183: 6629-38. https://doi.org/10.4049/jimmunol.0901033; PMid:19846873 PMCid:PMC2777750

14. Broberg CA, Palacios M, Miller VL. (2014). Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Reports. 6: 64: https://doi.org/10.12703/P6-64.

15. Brown G.D. (2006, Jan). Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 6(1): 33-43. https://doi.org/10.1038/nri1745.

16. Hua KF, Yang FL, Chiu HW. (2015, Sep). Capsular Polysaccharide Is Involved in NLRP3 Inflammasome Activation by Klebsiella pneumoniae Serotype K1. Infect Immun. 83(9): 3396-409. https://doi.org/10.1128/IAI.00125-15.

17. Daikos GL, Tsaousi S, Tzouvelekis LS. (2014). Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 58: 2322–2328. doi 10.1128/AAC. 02166-13.

18. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. (2009, Oct). Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol. 10(10): 1081-8. https://doi.org/10.1038/ni.1778.

19. Schurr JR, Young E, Byrne P. (2005, Jan). Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun. 73(1): 532-45. https://doi.org/10.1128/IAI.73.1.532-545.2005.

20. Chen IY, Ichinohe T. (2015, Jan). Response of host inflammasomes to viral infection. Trends Microbiol. 23(1): 55-63. https://doi.org/10.1016/j.tim.2014.09.007.

21. Munoz-Price LS, Poirel L, Bonomo RA. (2013, Sep). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 13(9): 785-96. https://doi.org/10.1016/S1473-3099(13)70190-7.

22. Lin YT, Wang YP, Wang FD, Fung CP. (2015, Feb 18). Community-onset Klebsiella pneumoniae pneumonia in Taiwan: clinical features of the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front Microbiol. 9: 122. https://doi.org/10.3389/fmicb.2015.00122.

23. Fouts DE, Tyler HL, DeBoy RT. (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4: e1000141. https://doi.org/10.1371/journal.pgen.1000141; PMid:18654632 PMCid:PMC2453333

24. Jeannin P, Bottazzi B, Sironi M. (2005, May). Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity. 22(5): 551-60. https://doi.org/10.1016/j.immuni.2005.03.008.

25. Bhan U, Ballinger MN, Zeng X. (2010, Mar 26). Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia. PLoS One. 5(3): e9896. https://doi.org/10.1371/journal.pone.0009896.

26. Shenderov K, Barber DL, Mayer-Barber KD. (2013, Jun 1). Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol. 190(11): 5722-30. https://doi.org/10.4049/jimmunol.1203343.

27. Cox N, Pilling D, Gomer RH. (2015, July 7). DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice. PNAS. 27(112): 8385–8390. doi 10. 1073/pnas.1500956112.

28. Miyake Y, Toyonaga K, Mori D. (2013, May 23). C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity. 38(5): 1050-62. https://doi.org/10.1016/j.immuni.2013.03.010.

29. Steichen AL, Binstock BJ, Mishra BB, Sharma J. (2013, Sep). C-type lectin receptor Clec4d plays a protective role in resolution of Gram-negative pneumonia. J Leukoc Biol. 94(3): 393-8. https://doi.org/10.1189/jlb.1212622.

30. Happel KI,. Zheng M, Young E. (2003, May 1). Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol. 170(9): 4432-6. https://doi.org/10.4049/jimmunol.170.9.4432; PMid:12707317 PMCid:PMC2841978

31. Dambuza IM, Brown GD. (2015, Feb). C-type lectins in immunity: recent developments. Curr Opin Immunol. 32: 21-7. https://doi.org/10.1016/j.coi.2014.12.002.

32. Geijtenbeek TB,. Krooshoop DJ,. Bleijs DA. (2000, Oct). DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol. 1(4): 353-7. https://doi.org/10.1038/79815.

33. Martinez N, Ketheesan N, Martens GW. (2016, Oct). Defects in early cell recruitment contribute to the increased susceptibility to respiratory Klebsiella pneumoniae infection in diabetic mice. Microbes Infect. 18(10): 649-655. https://doi.org/10.1016/j.micinf.2016.05.007.

34. Devaraj S, Jialal I. (2011, Jun). C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arterioscler Thromb Vasc Biol. 31(6): 1397-402. https://doi.org/10.1161/ATVBAHA.111.225508

35. Teixeira-Coelho M, Guedes J, Ferreirinha P. (2014, Mar). Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur J Immunol. 44(3): 856-66. https://doi.org/10.1002/eji.201343734.

36. Van Lieshout MH, Blok DC, Wieland CW. (2012). Differential Roles of MyD88 and TRIF in Hematopoietic and Resident Cells During Murine Gram-Negative Pneumonia. J Infect Dis. 206(9): 1415-1423. doi 10.1093/infdis/jis50.

37. Dominguez-Soto A, Sierra-Filardi E, Puig-Kroger A. (2011, Feb 15). Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on m2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. J Immunol. 186(4): 2192-200. https://doi.org/10.4049/jimmunol.1000475.

38. Drickamer K, Taylor ME. (2015, Oct). Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol. 34: 26-34. https://doi.org/10.1016/j.sbi.2015.06.003.

39. Friedlander C. (1882). Uber die scizomyceten bei der acuten fibrosen pneumonie. Arch Pathol Anat Physiol Klin Med. 87: 319–324. https://doi.org/10.1007/BF01880516

40. García-Vallejo JJ, van Kooyk Y. (2009, Jul). Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev. 230(1): 22-37. https://doi.org/10.1111/j.1600-065X.2009.00786.x.

41. Garcia-Vallejo JJ, van Kooyk Y. (2013, Oct). The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol. 34(10): 482-6. https://doi.org/10.1016/j.it.2013.03.001.

42. Geijtenbeek TB, Gringhuis SI. (2009, Jul). Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 9(7): 465-79. https://doi.org/10.1038/nri2569.

43. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. (2016, Jun 13). Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol. 7: 895. https://doi.org/10.3389/fmicb.2016.00895.

44. Koupetori M, Retsas T, Antonakos N. (2014). Hellenic Sepsis Study Group. 2014. Bloodstream infections and sepsis in Greece: over-time change of epidemiology and impact of de-escalation on final outcome. BMC Infect Dis. 14: 272. https://doi.org/10.1186/1471-2334-14-272.

45. Hoogerwerf JJ, van der Windt GJ, Blok DC. (2012, Sep 25). Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia. Mol Med. 18: 1067-75. https://doi.org/10.2119/molmed.2011.00450.

46. Wieland CW, van Lieshout MH, Hoogendijk A.J, van der Poll T. (2011, Apr). Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2. Eur Respir J. 37(4): 848-57. https://doi.org/10.1183/09031936.00076510.

47. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. (2008, Jun 12). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe. 3(6): 352-63. doi 10.1016/j.chom.2008.05.003. https://doi.org/10.1016/j.chom.2008.05.003

48. Huang X, Yang Y. (2010, Aug). Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 14(8): 787-96. https://doi.org/10.1517/14728222.2010.501333.

49. Ariizumi K, Shen GL, Shikano S. (2000, Jun 30). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 275(26): 20157-67. https://doi.org/10.1074/jbc.M909512199.

50. Li Y, Yun J, Liu L, Li Y, Wang X. (2016, Nov). Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumonia. Curr Microbiol. 73(5): 732-8. https://doi.org/10.1007/s00284-016-1117-6.

51. Shrivastava G, León-Juárez M, García-Cordero J, Meza-Sánchez DE, Cedillo-Barrón L. (2016, Dec). Inflammasomes and its importance in viral infections. Immunol Res. 64(5-6): 1101-1117. https://doi.org/10.1007/s12026-016-8873-z; PMid:27699580.

52. Van Gisbergen KP, Ludwig IS, Geijtenbeek TB, van Kooyk Y. (2005, Nov 7). Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett. 579(27): 6159-68. https://doi.org/10.1016/j.febslet.2005.09.089.

53. Pantelidou IM, Galani I, Georgitsi M. (2015, Nov). Interactions of Klebsiella pneumonia with the innate immune system vary in relation to clone and resistance phenotype. Antimicrob Agents Chemother. 59(11): 7036-43. https://doi.org/10.1128/AAC.01405-15.

54. Ye P, Garvey PB, Zhang P. (2001, Sep). Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol. 25(3): 335-40. https://doi.org/10.1165/ajrcmb.25.3.4424.

55. Jain A, Kaczanowska S, Davila E. (2014, Nov 17). IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance. Front Immunol. 5: 553. https://doi.org/10.3389/fimmu.2014.00553.

56. Kerscher B, Willment JA, Brown GD. (2013, May). The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol. 25(5): 271-7. https://doi.org/10.1093/intimm/dxt006.

57. Kingeter LM, Lin X. (2012, Mar). C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol. 9(2): 105-12. https://doi.org/10.1038/cmi.2011.58.

58. Regueiro V, Moranta D, Campos MA. (2009). Klebsiella pneumonia increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect Immun February. 77(2): 714-724. doi 10.1128/IAI.00852-08.

59. Holden VI, Breen P,  Houle S. (2016, Sep-Oct). Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 7(5): e01397-16. Published online 2016 Sep 13. https://doi.org/10.1128/mBio.01397-16.

60. Frank CG, Reguerio V, Rother M. (2013, Jul). Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell Microbiol. 15(7): 1212-33. https://doi.org/10.1111/cmi.12110.

61. Lee DH, Kim HW. (2014). Innate immunity induced by fungal β-glucans via dectin-1 signaling pathway. Int J Med Mushrooms. 16(1): 1-16. https://doi.org/10.1615/IntJMedMushr.v16.i1.10.

62. Liao PC, Chao LK, Chou JC. (2013, Jan). Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflamm Res. 62(1): 89-96. https://doi.org/10.1007/s00011-012-0555-2.

63. Jondle CN, Sharma A, Simonson TJ. (2016, Apr 1). Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia. J Immunol. 196(7): 3088-96. https://doi.org/10.4049/jimmunol.1501790.

64. March C, Moranta D, Regueiro V. (2011, Mar 25). Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J Biol Chem. 286(12): 9956-67. https://doi.org/10.1074/jbc.M110.181008.

65. Podsiad A, Standiford TJ, Ballinger MN. (2016, Mar 1). MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am J Physiol Lung Cell Mol Physiol. 310(5): L465-75. https://doi.org/10.1152/ajplung.00224.2015.

66. Jo EK, Kim JK, Shin DM, Sasakawa C. (2016, Mar). Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13(2): 148-59. doi 10.1038/cmi.2015.

67. Li B, Zhao Y, Liu C, Chen Z, Zhou D. (2014). Molecular pathogenesis of Klebsiella pneumonia. Future Microbiol. 9(9): 1071-81. https://doi.org/10.2217/fmb.14.48.

68. Mutwiri G. (2012, Jul 15). TLR9 agonists: immune mechanisms and therapeutic potential in domestic animals. Vet Immunol Immunopathol. 148(1-2): 85-9. https://doi.org/10.1016/j.vetimm.2011.05.032.

69. Branzk N, Lubojemska A, Hardison SE. (2014, Nov). Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 15(11): 1017-25. https://doi.org/10.1038/ni.2987.

70. Cai S, Batra S, Wakamatsu N. (2012, Jun 1). NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection. J Immunol. 188(11): 5623-35. doi 0.4049/jimmunol. 1200195.

71. Willingham SB, Allen IC, Bergstralh DT. (2009, Aug 1). NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 183(3): 2008-15. https://doi.org/10.4049/jimmunol.0900138.

72. Bertolotti B, Oroszová B, Sutkeviciute I. (2016, Nov 29). Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr Res. 435: 7-18. https://doi.org/10.1016/j.carres.2016.09.005.

73. Noreen M, Arshad M. (2015, Jun). Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 62(2): 234-52. https://doi.org/10.1007/s12026-015-8640-6.

74. Campos AC, Albiero J, Ecker AB. (2016, Nov 1). Outbreak of Klebsiella pneumoniae carbapenemase-producing K pneumoniae: A systematic review. Am J Infect Control. 44(11): 1374-1380. https://doi.org/10.1016/j.ajic.2016.03.022.

75. Jeannin P, Magistrelli G, Herbault N. (2003, Feb). Outer membrane protein A renders dendritic cells and macrophages responsive to CCL21 and triggers dendritic cell migration to secondary lymphoid organs. Eur J Immunol. 33(2): 326-33. https://doi.org/10.1002/immu.200310006.

76. Paczosa MK, Mecsas J. (2016, Jun 15). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 80(3): 629-61. https://doi.org/10.1128/MMBR.00078-15.

77. Plato A, Willment JA, Brown GD. (2013, Apr). C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol. 32(2): 134-56. https://doi.org/10.3109/08830185.2013.777065.

78. Plato A, Hardison SE, Brown GD. (2015, Mar). Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 37(2): 97-106. https://doi.org/10.1007/s00281-014-0462-4.

79. Chen IT, Hsu PH, Hsu WC, Chen NJ, Tseng P.H. (2015, Jul 20). Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 5: 12300. https://doi.org/10.1038/srep12300.

80. Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. (2014, Jun 1). Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis. 209(11): 1837-46. https://doi.org/10.1093/infdis/jit820.

81. Berzi A, Ordanini S, Joosten B. (2016, Oct 13). Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulant. Sci Rep. 6: 35373. https://doi.org/10.1038/srep35373.

82. Fialkina SV, Bondarenko VM, Naboka IL. (2011, Sep-Oct). Revealing the genetic determinants of Pks-pathogenicity island in clinical strains of Enterobacteria. Zh Mikrobiol Epidemiol Immunobiol. (5): 3-7. http://bigsdb.web.pasteur.fr/klebsiella/klebsiella. html. PMid:22145340

83. Richardson MB, Williams SJ. (2014, Jun 23). MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns. Front Immunol. 5: 288. https://doi.org/10.3389/fimmu.2014.00288.

84. March C, Cano V, Moranta D. (2013). Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One. 8: e56847. https://doi.org/10.1371/journal.pone.0056847; PMid:23457627 PMCid:PMC3574025

85. Acorci-Valério MJ, Bordon-Graciani AP, Dias-Melicio LA. (2010, Feb). Role of TLR2 and TLR4 in human neutrophil functions against Paracoccidioides brasiliensis. Scand J Immunol. 71(2): 99-108. https://doi.org/10.1111/j.1365-3083.2009.02351.x.

86. Evrard B, Balestrino D, Dosgilbert A. (2010, Jan). Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumonia. Infect Immun. 78(1): 210-9. https://doi.org/10.1128/IAI.00864-09.

87. Sandiumenge A, Rello J. (2012, May). Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management. Curr Opin Pulm Med. 18(3): 187-93. https://doi.org/10.1097/MCP.0b013e328351f974.

88. Schnaar RL. (2016, Jun). Glycobiology simplified: diverse roles of glycan recognition in inflammation. J Leukoc Biol. 99(6): 825-38. https://doi.org/10.1189/jlb.3RI0116-021R.

89. Shon AS, Bajwa RP, Russo TA. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 4; 2: 107–118. https://doi.org/10.4161/viru.22718.

90. Shu C, Wang S, Xu T. (2015, May). Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes. Dev Comp Immunol. 50(1): 19-25. https://doi.org/10.1016/j.dci.2015.01.004.

91. Silva-Gomes S, Decout A, Nigou J. (2015). Pathogen-Associated Molecular Patterns (PAMPs). Encyclopedia of Inflammatory Diseases: 1-16.

92. Smith DG, Williams SJ. (2016, Feb). Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle. Carbohydr Res. 420: 32-45. https://doi.org/10.1016/j.carres.2015.11.009.

93. Soto E, Marchi S, Beierschmitt A. (2016, Mar 8). Teraction of non-human primate complement and antibodies with hypermucoviscous Klebsiella pneumoniae. Vet Res. 47: 40. https://doi.org/10.1186/s13567-016-0325-1.

94. Yang FL, Yang YL, Liao PC. (2011, Jun 17). Structure and immunological characterization of the capsular polysaccharide of a pyrogenic liver abscess caused by Klebsiella pneumoniae: activation of macrophages through Toll-like receptor 4. J Biol Chem. 286(24): 21041-51. https://doi.org/10.1074/jbc.M111.222091.

95. Lee RT, Hsu TL, Huang SK. (2011, Apr). Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology. 21(4): 512-20. https://doi.org/10.1093/glycob/cwq193.

96. Strasser D. (2012, Jan 27). Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity. 36(1): 32-42. https://doi.org/10.1016/j.immuni.2011.11.015.

97. Graham LM, Gupta V, Schafer G. (2012, Jul 27). The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem. 287(31): 25964-74. https://doi.org/10.1074/jbc.M112.384164.

98. Arce I, Martínez-Muñoz L, Roda-Navarro P, Fernández-Ruiz E. (2004, Jan). The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor. Eur J Immunol. 34(1): 210-232. https://doi.org/10.1002/eji.200324230.

99. Irvine KL, Hopkins LJ, Gangloff M, Bryant CE. (2013, Jul 4). The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Vet Res. 44: 50. https://doi.org/10.1186/1297-9716-44-50.

100. Marim FM, Franco MM, Gomes MT. (2016, Jul 12). The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol. https://doi.org/10.1007/s00281-016-0581-1.

101. Drummond RA, Saijo S, Iwakura Y, Brown GD. (2011, Feb). The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 41(2): 276-81. https://doi.org/10.1002/eji.201041252.

102. Neubauer EF, Poole AZ, Weis VM, Davy SK. (2016, Nov 15). The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. Peer J. 4: e2692. https://doi.org/10.7717/peerj.2692.

103. Bhan U, Lukacs NW, Osterholzer JJ. (2007, Sep 15). TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells. J Immunol. 179(6): 3937-46. https://doi.org/10.4049/jimmunol.179.6.3937.

104. Jeyaseelan S, Young SK, Yamamoto M. (2006, Jul 1). Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa. J Immunol. 177(1): 538-47. https://doi.org/10.4049/jimmunol.177.1.538.

105. Yang H, Zhang X, Geng J, Zheng Z, Fu Q. (2014, Nov). Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection. Pediatr Infect Dis J. 33(11): e310-5. https://doi.org/10.1097/INF.0000000000000395.

106. Tomás A, Lery L, Regueiro V. (2015, Jul 3). Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem. 290(27): 16678-97. doi 10.1074/jbc.M114. 621292.

107. Van Kooyk Y. (2008, Dec). C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans. 36 (Pt 6): 1478-81. https://doi.org/10.1042/BST0361478.

108. Van Kooyk Y, Ilarregui JM, van Vliet SJ. (2015, Feb). Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology. 220(2): 185-92. https://doi.org/10.1016/j.imbio.2014.10.002.

109. Yang CS, Shin DM, Jo EK. (2012, Mar). The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases. Int Neurourol J. 16(1): 2-12. https://doi.org/10.5213/inj.2012.16.1.2.

110. Zelensky AN, Gready JE. (2005, Dec). The C-type lectin-like domain superfamily. FEBS J. 272(24): 6179-217. https://doi.org/10.1111/j.1742-4658.2005.05031.x.

111. Zhang F, Ren S, Zuo Y. (2014, Jan). DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol. 33(1): 54-66. https://doi.org/10.3109/08830185.2013.834897.

112. Kim GD, Lee SE, Yang H. (2015, May). β2 integrins (CD11/18) are essential for the chemosensory adhesion and migration of polymorphonuclear leukocytes on bacterial cellulose. J Biomed Mater Res A. 103(5): 1809-17. https://doi.org/10.1002/jbm.a.35316.