• Breast milk oligosaccharides: the history of discovery, structure and protective functions

Breast milk oligosaccharides: the history of discovery, structure and protective functions

Makarova E. G., Netrebenko O. K., Ukraintsev S. E.
NestleRussia
Pirogov Russian National Research Medical University, Moscow, Russia
DOI 10.24110/0031-403X-2018-97-4-152-160

Published: Pediatria. — 2018. — Vol. 97, No. 4. — P. 152–160.

The article provides a literature review on breast milk oligosaccharides (BMO). According to modern data, BMO have important protective properties: they prevent the adhesion of pathogens and toxins, reduce the level of pro-inflammatory cytokines, improve the intestinal wall integrity. An important factor of protection is the immunomodulatory effect of BMO, which is performed through the connection of BMO with receptors — lectins. The article presents data on association of galectins with BMO mechanisms, and the action of galectins on the state of immune cells an functions.

Key words: breast milk, oligosaccharides, structure, protective functions, intestinal microbiota, different kinds of infants feeding.

Quote: E.G. Makarova, O.K. Netrebenko, S.E. Ukraintsev. Breast milk oligosaccharides: the history of discovery, structure and protective functions. Pediatria. 2018; 97 (4): 152–160.

REFERENCES

1. Weirich A, Hoffmann GF. Ernst Moro (1874—1951) — A great pediatric career started at the rise of university-based pediatric research but was curtailed in the shadows of Nazi laws. Eur. J. Pediatr. 2005; 164: 599—606. DOI: 10.1007/s00431-005-1703-2.

2. Clemens Kunz. Historical Aspects of Human Milk Oligosaccharides. Adv. Nutr. 2012; 3(3): 430S-439S. doi: 10.3945/an.111.001776 .

3. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012; 22(9): 1147—1162. doi: 10.1093/glycob/cws074.

4. Kunz C, Kuntz S, Rudloff S. Bioactivity of human milk oligosaccharides. In: Moreno FM, Sanz ML, eds. Food Oligosaccharides: Production, Analysis and Bioactivity. 1st ed. John Wiley & Sons, Ltd., 2014.

5. Bode L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 2015; 91(11): 619—622. doi: 10.1016/j.earlhumdev.2015.09.001.

6. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 2014; 34: 143—169. doi: 10.1146/annurev-nutr-071813-105721.

7. Donovan SM, Comstock SS. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann. Nutr. Metab. 2016; 69 (Suppl 2): 42—51. doi: 10.1159/000452818.

8. Urashima T, Saito T, Nakamura T, Messer M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 2001; 18 (5): 357-371. PMID: 11925504.

9. Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr. Rev. 2009; 67 (Suppl. 2): S183-191. doi: 10.1111/j.1753-4887.2009.00239.x.

10. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, Giuliani F, Bertin E, Fabris C, Coppa GV. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011; 128: e1520-1531. doi: 10.1542/peds.2011-1206.

11. Sean Austin, Carlos A. De Castro, Thierry B net, Yangfeng Hou, Henan Sun, Sagar K. Thakkar, Gerard Vinyes-Pares, Yumei Zhang, Peiyu Wang. Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban. Mothers. Nutrients. 2016; 8: 346. doi: 10.3390/nu8060346.

12. Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S. Humanmilk oligosaccharides are minimally digested in vitro. J. Nutr. 2000; 130: 3014-3020. DOI: 10.1093/jn/130.12.3014.

13. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 2000; 71: 1589-1596. DOI: 10.1093/ajcn/71.6.1589.

14. Sabharwal H, Nilsson B, Gronberg G, Chester MA, Dakour J, Sjoblad S, Lundblad A. Oligosaccharides from feces of preterm infants fed on breast milk. Arch. Biochem. Biophys. 1988; 265: 390-406. doi.org/10.1016/0003-9861(88)90142-7.

15. Sabharwal H, Sjoblad S, Lundblad A. Sialylated Oligosaccharides in Human Milk and Feces of Preterm, FullOTerm, and Weaning Infants. Article in Journal of Pediatric Gastroenterology and Nutrition. 1991; 12 (4): 480O484. DOI: 10.1097/00005176-199105000-00012.

16. Chaturvedi P, Warren CD, Buescher CR, Pickering LK, Newburg DS. Survival of human milk oligosaccharides in the intestine of infants. Adv. Exp. Med. Biol. 2001; 501: 315-323. PMID: 11787697.

17. Coppa GV, Pierani P, Zampini L, Bruni S, Carloni I, Gabrielli O. Characterization of oligosaccharides in milk and feces of breast-fed infants by high-performance anion-exchange chromatography. Adv. Exp. Med. Biol. 2001; 501: 307-314. PMID: 11787695.

18. Albrecht S, Schols HA, van den Heuvel EG, Voragen AG, Gruppen H. CE-LIF-MS n profiling of oligosaccharides in human milk and feces of breast-fed babies. Electrophoresis. 2010; 31: 1264-1273. doi: 10.1002/elps.200900646.

19. Albrecht S, Schols HA, van den Heuvel EG, Voragen AG, Gruppen H. Occurrence of oligosaccharides in feces of breastfed babies in their first six months of life and the corresponding breast milk. Carbohydr. Res. 2011; 346: 2540-2550. doi: 10.1016/j.carres.2011.08.009.

20. Albrecht S, Schols HA, van Zoeren D, van Lingen RA, Groot Jebbink LJ, van den Heuvel EG, Voragen AG, Gruppen H. Oligosaccharides in feces of breast- and formula-fed babies. Carbohydr. Res. 2011; 346: 2173-2181. doi: 10.1016/j.carres.2011.06.034.

21. Dotz V, Adam R, Lochnit G, Schroten H, Kunz C. Neutral oligosaccharides in feces of breastfed and formula-fed infants at different ages. Glycobiology. 2016; 26 (12): 1308-1316. DOI: 10.1093/glycob/cww087.

22. Obermeier S, Rudloff S, Pohlentz G, Lentze MJ, Kunz C. Secretion of 13C-labelled oligosaccharides into human milk and infant's urine after an oral [13C] galactose load. Isotopes Environ Health Stud. 1999; 35: 119-125. DOI: 10.1080/10256019908234084.

23. Rudloff S, Obermeier S, Borsch C, Pohlentz G, Hartmann R, Brosicke H, Lentze MJ, Kunz C. Incorporation of orally applied (13)C-galactose into milk lactose and oligosaccharides. Glycobiology. 2006; 16: 477-487. doi.org/10.1093/glycob/cwj092.

24. Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br. J. Nutr. 2011; 107: 957-963. doi: 10.3945/an.111.001594.

25. Sjogren Y, Tomicic S, Lundber A, Bottcher M, Bjorksten B, Sverrmark-Ekstrom E, Jenmalm M. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical and Experimental Allergy. 2009; 39: 1842-1851. doi: 10.1111/j.1365-2222.2009.03326.x

26. Sarkar A, Mandal S. Bifidonacteria – insight into clinical outcomes and mechanisms of its probiotic action. Microbiological. Res. 2016; 192: 159-171. Dx.doi.org/10.1016/j.micres.2016.07.001

27. Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen. Early life: gut microbiota and immune development in infancy. Beneficial. Microbes. 2010; 1(4): 367-382. DOI: 10.3920/BM2010.0027

28. Le Doare K, Holder B, Bassett A, Pannaraj P. Mother's milk: a purposeful contribution to the development of infant microbiota and immunity. Frontiers in Immunology. 2018: 9: article 361. DOI: 3389/fimmu.2018.00361

29. Coppa G, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Carpetti R, Grazio G. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: E. coli, V. cholerae, and Salmonella fyris. Ped. Res. 2006; 59 (3): 377-381. doi: 10.1203/01.pdr.000020080.45593.17

30. Morrow A, Ruiz-Palacios G, Jiang X, Newburg D. Human milk glycans that inhubut pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 2005; 135: 1304-1307.

31. Hester S, Chen X, Li M, Mpnaco M, Comstock S, Kuhlenschmidt M, Donovan S. Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br. J. of Nutrition. 2015; 110: 1233-1242. doi: 10.1017/800071145130000391

32. Musilova S, Modrackova N, Doskocil I, Sveistil R. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines. Acta Microbiol. And Immunologica Hungaria. 2017; 64 (4): 415-422. doi: 10.1556/030.64.2017.029

33. Weichert S, Jennewien S, Hufner E, Weiss C, Borkowski J, Putze J, Schroten H. Bioengineered 2-fucosillactose and 3-fucisillactose inhibit the adhestion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell line. Nutr. Res. 2013; 33 (10): 831-838. dx.doi.org/10.1016/j.nutr.2013.07.009

34. Puccio G, Alliet P, Cajozzo C, Jansses E, Coresello G, Sprenger N, Wernimont S, Egli D, Gosoni L, Steenhaut P. Effect of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. JPGN. 2017; 64 (4): 624-630. doi: 10.1097/mpg.00000000001520

35. Holscher H, Davis S, Tappenden A. Human milk oligosaccharides influence maturation of human intestinal Cac2Bbe and HT-29 cell lines. J. of Nutrition. 2014; 144: 586-591. doi: 10.3945/n.113.189704

36. Holscher H, Bode L, Tappenden A. Human milk oligosaccharides influence intestinal epithelia; cell maturation in vitro. JPGN. 2017; 64 (2): 296-301. Doi: 10.1097/MPG.000000000001274

37. Lane J, O'Callaghan J, Carrington S, Hickey R. Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br. J. of Nutrition. 2013; 110: 2127-2137. Doi: 10.1017/S0007114513001591.

38. Hung T, Suzuki T. Short-chain fatty acids suppress inflammatory reaction in Caco-2 cells and mouse colons. J. Agric. Food Chem. 2018; 66: 108-117. DOI: 10.1021/acs.jaf.7b04233

39. Wickramasinghe S, Pacheco A, Lemay D, Mills D. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiology. 2015; 15: 172-184. DOI: 10.1186/s12866-015-0508-3

40. Goering K, Mattiage B, Oliver J, Wilder J, Barrett E, Buck R. Similar to those who breastfed infants fed a formula containing 2-Fucosillactoe have lower inflammatory cytokines in randomized controlled trial. J. of Nutr. 2016; 146: 2559-2566. Doi: 10.3945/n.116.236919

41. He Y, Liu S, Kling D, Leone S, Lawlor N, Huang Y, Feinberg S, Hill D, Newburg D. The human milk oligosaccharide 2-fucosillactose modulate CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut. 2016; 55: 33-46. doi: 10.1136/gutjnl-2014-307544

42. Noll A, Courdine J, Yu Y, Lasanajak Y, Smith D, Cummings R. Galectins are human milk glycan receptors. Glycobiology. 2016; 28: 655-669. doi: 10.1093/glycob/cww002

43. De Leila S, Sundblud V, Cerliani J, Guardia C, Estrin D, Vasta G, Rabinovich G. When galectins recognize glycan: from biochemistry to physiology and back again. Biochemisctry. 2011; 50(27): 7842-7857. Doi: 10.1021/bi201121m

44. Sundblad V, Quintar A, Morosi L, Niveloni S, Cabanne A, Smecuol E, Maurino E, Marino K, Bai J, Maldonado C, Rabinovich G. Galectines in intestinal inflammation: Galectin-1 expression delineates response to treatment in celiac disease patients. Frontier in Immunology. 2018; 9: article 379.

45. Dewulf E, Cani P, Sandrine P Claus, Susana Fuentes, Philippe GB Puylaert, Audrey M Neyrinck, Laure B Bindels, Willem M de Vos, Glenn R Gibson, Jean-Paul Thissen, Nathalie M Delzenne. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013; 62 (8): 1112-1121. doi: 10.1136/gutjnl-2012-303304

46. Kulinich A, Liu L. Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carboh. Res. 2016; 432: 62-70. http//dx.doi.org/10.1016/jcarres.2016.07.009

47. Ling Xiao, Thea Leusink-Muis, Nienke Kettelarij, Ingrid van Ark, Bernadet Blijenberg Nienke A. Hesen, Bernd Stahl, Saskia A. Overbeek, Johan Garssen, Gert Folkerts, Belinda van't Land. Human. Milk Oligosaccharide 2’-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model. Front. Immunol. 2018; 9: 452. Published online 2018 Mar 9. doi: 10.3389/fimmu.2018.00452