• Evaluation of risk of miscarriage depending on genetic characteristics of a woman
To content Full text of article

Evaluation of risk of miscarriage depending on genetic characteristics of a woman

PERINATOLOGY AND PEDIATRIC. UKRAINE. 2018.1(73):74-79; doi 10.15574/PP.2018.73.74

Tkachenko V. B., Razdaibieidina A. S., Vorobiova I. I.
SI «Institute of Pediatrics, Obstetrics and Gynaecology of NAMS of Ukraine», Kyiv, Ukraine
Taras Shevchenko National University of Kyiv, Ukraine

Objective — to study the relationship between the single nucleotide polymorphisms of Toll_like receptors, cytokines, progesterone gene and the risk of spontaneous abortion.
Material and methods. Single nucleotide polymorphisms of such genes (TLR2 G753A, TLR4 C399T, TLR9G2848A, TGF-β1 C509T, PGR PROGINS, IL-6 G174C, IL-8 C781T, IL-10C592A, TNFα G308A) were studied in 106 women whose pregnancy ended in miscarriage and in 74 women who delivered in term without any pregnancy complication. All participants were Ukrainian women.
Results. According to the data obtained, the genotypes of genes that dramatically increase the risk of spontaneous abortion in the order of decreasing odds ratio are as follows: TLR9 AA, ІL-10 АА, TLR2 GA, PROGINS Т2/Т2, TLR4 CT, TLR9 GA, IL-10 СА, IL-6 GC, TGF-β CC. The most significant mutant alleles of the studied genes, which significantly increase the risk of spontaneous abortion, in order of decreasing odds ratios are as follows: TLR9A, TLR2A, IL-10A, TLR4T, TNFα A.
Conclusions. The detected genotypes and allelic polymorphisms play a critical role in miscarriage.
Key words: miscarriage, spontaneous abortion, cytokines, Toll-like receptors, progesterone, polymorphism.


1. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller A-B et al. (2013). Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 10: S2. https://doi.org/10.1186/1742-4755-10-S1-S2.

2. Thompson JL, Kuklina EV, Bateman BT, Callaghan WM, James AH, Grotegut CA. (2015). Medical and obstetric outcomes among pregnant women with congenital heart disease. Obstet Gynecol. 126: 346-354. https://doi.org/10.1097/AOG.0000000000000973.

3. Van Eerden L, Zeeman GG, Page-Christiaens GC, Vandenbussche F, Oei SG, Scheepers HC, van Eyck J, Middeldorp JM, Pajkrt E, Duvekot JJ, de Groot CJ, Bolte AC. (2014). Termination of pregnancy for maternal indications at the limits of fetal viability: A retrospective cohort study in the dutch tertiary care centres. BMJ open. 4: e005145. https://doi.org/10.1136/bmjopen-2014-005145; PMid:24939810 PMCid:PMC4067813

4. Dundar M, Uzak AS, Erdogan M, Akbarova Y. (2011). Prediction, prevention and personalisation of medication for the prenatal period: genetic prenatal tests for both rare and common diseases. The EPMA Journal. 2(2): 181—195. https://doi.org/10.1007/s13167-011-0080-3.

5. Sykes L, MacIntyre DA, Yap XJ, Ponnampalam S, Teoh TG, Bennett PR. (2012). Changes in the Th1: Th2 Cytokine Bias in Pregnancy and the Effects of the Anti-Inflammatory Cyclopentenone Prostaglandin 15-DeoxyΔ12,14-Prostaglandin J2. Mediators of Inflammation: 416—739. https://doi.org/10.1155/2012/416739.

6. Jinfen JU et al. (2014). Toll-like Receptor-4 Pathway Is Required for the Pathogenesis of Human Chronic Endometritis. Experimental and Therapeutic Medicine. 8.6: 1896—1900. PMC. Web. 30 Dec. 2017.

7. Skevaki C, Pararas M, Kostelidou K et al. (2015). Single nucleotide polymorphisms of toll_like receptors and susceptibility to infectious diseases. Clin Exp Immunol. 180: 165—177. https://doi.org/10.1111/cei.12578 ;PMid:25560985 PMCid:PMC4408151

8. Wegmann TG, Lin H, Guilbert L, Mosmann TR. (1993). Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 14 (7): 353—610. https://doi.org/10.1016/0167-5699(93)90235-D.

9. Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. (2014). Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front. Immunol. 27 (5): 253. https://doi.org/10.3389/fimmu.2014.00253

10. Daher S, Mattar R, Gueuvoghlanian-Silva B, Torloni M. (2012). Genetic polymorphisms and recurrent spontaneous abortions: an overview of current knowledge. American Journal of Reproductive Immunology. 67 (4): 341—347. https://doi.org/10.1111/j.1600-0897.2012.01123.x; PMid:22390536

11. Abrams ET, Miller EM. (2011). The roles of the immune system in women's reproduction: evolutionary constraints and life history tradeoffs. Am J Phys Anthropol. 146 (53): 134—54. https://doi.org/10.1002/ajpa.21621. Review.

12. Rakesh S et al. (2013). Lifestyle Factors and Reproductive Health: Taking Control of Your Fertility. Reproductive Biology and Endocrinology: RB&E. 11: 66. PMC. Web. 30 Dec. 2017.

13. Marques-Pinto A, Carvalho D. (2013). Human Infertility: AreEndocrine Disruptors to Blame? Endocrine Connections 2.3: R15-R29. PMC. Web. 30 Dec. 2017.

14. Rowe JH, Ertelt JM, Xin L, Way SS. (2013). Regulatory T cells and theimmune pathogenesis of prenatal infection. Reproduction. 146: R191-R203. https://doi.org/10.1530/REP-13-0262; PMid:23929902 PMCid:PMC3805746

15. Prigoshin N, Tambutti M, Larriba J, Gogorza S, Testa R. (2004). Cytokine genepolymorphisms in recurrent pregnancy loss of unknown cause. Am J Reprod Immunol. 52: 36—41. https://doi.org/10.1111/j.1600-0897.2004.00179.x; PMid:15214940

16. Manuck TA, Major HD, Varner MW, Chettier R, Nelson L, Esplin MS. (2010). Progesterone receptor genotype, family history, and spontaneous pretermbirth. Obstet Gynecol. 115: 765—70. https://doi.org/10.1097/AOG.0b013e3181d53b83; PMid:20308837

17. Weel IC, Baergen RN, Romão-Veiga M, Borges VT, Ribeiro VR, Witkin SS et al. (2016). Association between Placental Lesions, Cytokines and Angiogenic Factors in Pregnant Women with Preeclampsia. PLoS ONE. 11 (6): e0157584. doi:10.1371/journal.pone.015758.

18. Christiansen OB. (1996, Jul.-Aug.). A fresh look at the causes and treatments of recurrent miscarriage, especially its immunological aspects. Hum Reprod Update. 2 (4): 271—93. https://doi.org/10.1093/humupd/2.4.271; PMid:9080226