• Белки, связывающие жирные кислоты (FABP), как маркеры поражения желудочно-кишечного тракта при острых нейроинфекциях у детей

Белки, связывающие жирные кислоты (FABP), как маркеры поражения желудочно-кишечного тракта при острых нейроинфекциях у детей

SOVREMENNAYA PEDIATRIYA.2017.5(85):13-18; doi 10.15574/SP.2017.85.13

Крамарев С. А., Марков А. И.
Национальный медицинский университет имени А.А. Богомольца, г. Киев, Украина

Осложнения со стороны желудочно-кишечного тракта (ЖКТ) при острых нейроинфекциях у детей увеличивают риск неблагоприятных последствий и негативно влияют на длительность лечения и сроки реабилитации больных.
Цель — изучение частоты поражения органов ЖКТ у детей с острыми нейроинфекциями с помощью биомаркеров L-FABP и I-FABP.
Пациенты и методы. Под наблюдением находились дети с острыми нейроинфекциями, проходившие стационарное лечение в городской клинике детских инфекционных болезней, которым проводилось исследование L-FABP и I-FABP в сыворотке крови методом иммуноферментного анализа.
Результаты. Проведен анализ историй болезни 59 детей с острыми инфекционными поражениями нервной системы (менингит, энцефалит). Наиболее высокий средний показатель I-FABP при первом исследовании в день госпитализации отмечался у пациентов с нейроинфекциями, осложненными отеком головного мозга (ОГМ), а L-FABP — у пациентов с септическим шоком. При втором исследовании (6–7-й день стационарного лечения) наблюдалась тенденция к нормализации показателей I-FABP и L-FABP у детей с нейроинфекциями, осложненными септическим шоком и ОГМ.
Выводы. Течение острых нейроинфекций у детей часто осложняется поражением органов ЖКТ. Более выраженные нарушения ассоциируются с такими осложнениями, как ОГМ и септический шок. Исследование биомаркеров I-FABP и L-FABP у детей с острыми нейроинфекциями позволяет на ранних стадиях диагностировать осложнения со стороны органов ЖКТ.
Ключевые слова: I-FABP, L-FABP, нейроинфекции, дети, желудочно-кишечные осложнения.

Литература

1. Piton G, Manzon C, Cypriani B, Carbonnel FC. (2011). Acute intestinal failure in critically ill patients: is plasma citrulline the right marker? Intencive care Med. 37(6): 911-917.

2. Schomaker S, Warner R, Bock J et al. (2013). Assessment of emerging biomarkers of liver injury in human subjects. Toxicol Sci. 132(2): 276-283. https://doi.org/10.1093/toxsci/kft009; PMid:23339181

3. Bonaz B, Sabate J-M. (2009). Brain-gut axis dysfunction. Gastroenterol Clin Biol. 33(1): 48-58. https://doi.org/10.1016/S0399-8320(09)71525-8

4. Dourado CC, Engler TM, Nascimento DM, Oliveira SB. (2012, Oct-Dec). Bowel dysfunction in patients with brain damage resulting from stroke and traumatic brain injury: a retrospective study of a case series. Text Context Nursing, Florianópolis. 21(4): 905-911. Retrieved Feb 22, 2017, from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-07072012000400022&lng=en

5. Uzun O, Turkmen S, Eryigit U et al. (2014). Can Intestinal Fatty Acid Binding Protein (I-FABP) Be A Marker in the Diagnosis of Abdominal Pathology? Turkish J Emerg Med. 14(3): 99-103. https://doi.org/10.5505/1304.7361.2014.15679; PMid:27355087 PMCid:PMC4909954

6. Prattes J, Raggam R, Vanstraelen K, Rabensteiner J, Hoegenauer C et al. (2016). Chemotherapy-Induced Intestinal Mucosal Barrier Damage: a Cause of Falsely Elevated Serum 1,3-Beta-d-Glucan Levels? Journal of clinical microbiology. 54(3): 798-801. https://doi.org/10.1128/JCM.02972-15; PMid:26719433 PMCid:PMC4767967

7. Machado M, Barbeiro H, Silva FD, Souza HD. (2012). Circulating fatty acid binding protein as a marker of intestinal failure in septic patients. Crit Care. 16(6): 455. https://doi.org/10.1186/cc11653; PMid:23130611 PMCid:PMC3672560

8. Nesseler N, Launey Y, Aninat C, Morel F, Mallédant Y, Seguin P. (2012). Clinical review: The liver in sepsis. Crit Care. 16(5): 235. https://doi.org/10.1186/cc11381; PMid:23134597 PMCid:PMC3682239

9. Cowlishaw P, Sair M. (2004). Coma, meningitis and encephalitis. Anaesth Intensive Care Med. 5(10): 323-325. https://doi.org/10.1383/anes.5.10.323.52310

10. Kanda T, Tsukahara A, Ueki K, et al. (2011). Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: a multicenter, observer-blinded validation study. J Gastroenterol. 46(4): 492-500. https://doi.org/10.1007/s00535-011-0373-2; PMid:21298292

11. Koçak E, Akbal E, Köklü S, Adam G. (2015). Evaluation of serum L-FABP levels in patients with acute pancreatitis. Turkish J Trauma Emerg Surg. 21(1): 39-43. https://doi.org/10.5505/tjtes.2015.49879; PMid:25779711

12. Derikx J, Poeze M, van Bijnen A, Buurman W, Heineman E. (2007). Evidence for intestinal and liver epithelial cell injury in the early phase of sepsis. Shock (Augusta, Ga.). 28(5): 544-548. https://doi.org/10.1097/shk.0b013e3180644e32

13. Bottasso AN, García M, Bondar C, et al. (2015). Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy. Mediators of Inflammation. 2015: 1-11. https://doi.org/10.1155/2015/738563; PMid:26346822 PMCid:PMC4540995

14. McIntosh A, Huang H, Atshaves B, et al. (2010). Fluorescent n-3 and n-6 very long chain polyunsaturated fatty acids: Three photon imaging in living cells expressing liver fatty acid binding protein. J Biol Chem. 285(24): 183-189. https://doi.org/10.1074/jbc.M109.079897; PMid:20382741 PMCid:PMC2881794

15. Funaoka H, Kanda T, Fujii H. (2010). Intestinal fatty acid-binding protein (I-FABP) as a new biomarker for intestinal diseases. Rinsho Byori. 58(2): 162-168. PMid:20229815

16. Reintam BA, Malbrain M, Starkopf J, et al. (2012). Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med. 38(3): 384-394. https://doi.org/10.1007/s00134-011-2459-y; PMid:22310869 PMCid:PMC3286505

17. Puleo F, Arvanitakis M, Van Gossum A, Preiser J-C. (2011). Gut failure in the ICU. Semin Respir Crit Care Med. 32(5): 626-638. https://doi.org/10.1055/s-0031-1287871; PMid:21989698

18. Horvatits T, Trauner M, Fuhrmann V. (2013). Hypoxic liver injury and cholestasis in critically ill patients. Curr Opin Crit Care. 19(2): 128-132. https://doi.org/10.1097/MCC.0b013e32835ec9e6; PMid:23403733

19. Pelsers M, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens W, Glatz J. (2003, Oct). Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem. 36(7): 529-535. https://doi.org/10.1016/S0009-9120(03)00096-1

20. Akbal E, Koçak E, Akyürek Ö, Köklü S, Batgi H, Şenes M. (2016). Liver fatty acid-binding protein as a diagnostic marker for non-alcoholic fatty liver disease. Wiener klinische Wochenschrift. 128(1-2): 48-52. https://doi.org/10.1007/s00508-014-0680-8; PMid:25447969

21. Pelsers M, Morovat A, Alexander G, Hermens W, Trull A, Glatz J. (2002, Nov). Liver Fatty Acid-binding Protein as a Sensitive Serum Marker of Acute Hepatocellular Damage in Liver Transplant Recipients. Clinical Chemistry. 48(11): 2055-2057. PMid:12406996

22. Sanfilippo F, Veenith T, Santonocito C, Vrettou C, Matta B. (2014). Liver function test abnormalities after traumatic brain injury: is hepato-biliary ultrasound a sensitive diagnostic tool? British Journal of Anaesthesia. 112(2): 298-303. https://doi.org/10.1093/bja/aet305; PMid:24067331

23. Kneen R, Michael B, Menson E, et al. (2012). Management of suspected viral encephalitis in children — Association of British Neurologists and British Paediatric Allergy, Immunology and Infection Group National Guidelines. J Infect. 64(5): 449-477. https://doi.org/10.1016/j.jinf.2011.11.013; PMid:22120594

24. Antoine D, Dear J, Lewis P, et al. (2013). Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 58(2): 777-787. https://doi.org/10.1002/hep.26294; PMid:23390034 PMCid:PMC3842113

25. Kirkpatrick A, Facs M, Frcsc P, Ball C, Facs F. (2016). Mesenteric ischemia, intra-abdominal hypertension, and the abdominal compartment syndrome. Plast Surg. 24(1): 9-10. https://doi.org/10.4172/plastic-surgery.1000950

26. O’Hare J, Zsombok A. (2016). Brain-liver connections: role of the preautonomic PVN neurons. Am J Physiol — Endocrinol Metab. 310(3): 183-189. https://doi.org/10.1152/ajpendo.00302.2015; PMid:26646097 PMCid:PMC4838125

27. Niewold T, Meinen M, van der Meulen J. (2004). Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs. Res Vet Sci. 77(1): 89-91. https://doi.org/10.1016/j.rvsc.2004.02.006; PMid:15120958

28. Ramírez M. (2013). Multiple organ dysfunction syndrome. Curr Probl Pediatr Adolesc Health Care. 43(10): 273-277. https://doi.org/10.1016/j.cppeds.2013.10.003; PMid:24295608

29. Rabbani M, Khan A, Ali S, et al. (2003). Spectrum of complications and mortality of bacterial meningitis: an experience from a developing country. J Pak Med Assoc. 53(12): 580-583. PMid:14765936

30. Takahashi C, Hinson H, Baguley I. (2015). Autonomic dysfunction syndromes after acute brain injury. In Handbook of clinical neurology. 128: 539-551. https://doi.org/10.1016/B978-0-444-63521-1.00034-0; PMid:25701906

31. Bansal V, Costantini T, Kroll L, et al. (2009). Traumatic Brain Injury and Intestinal Dysfunction: Uncovering the Neuro-Enteric Axis. Journal of Neurotrauma. 26(8): 1353-1359. https://doi.org/10.1089/neu.2008.0858; PMid:19344293 PMCid:PMC2989839